Enhancement in durability and performance for cement-based materials through tailored water-based graphene nanofluid additives

被引:1
作者
Wei, Xiao-Xiao [1 ]
Jia, Qingrong [2 ,3 ]
Zheng, Chaonan [3 ]
Zhu, Ji-Hua [1 ]
Pei, Chun [4 ]
机构
[1] Shenzhen Univ, Coll Civil & Transportat Engn, Guangdong Prov Key Lab Durabil Marine Civil Engn, Shenzhen 518000, Peoples R China
[2] Guangdong Prov Highway Construction Co Ltd, Guangzhou 518000, Guangdong, Peoples R China
[3] Guangzhou Architectural Engn Design Inst Co Ltd, Guangzhou 518000, Guangdong, Peoples R China
[4] Shenzhen Univ, Coll Civil & Transportat Engn, Guangdong Prov Key Lab Durabil Marine Civil Engn, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene nanofluid additives; Shrinkage resistance; Chloride impermeability; Microscopic characterization; Marine civil engineering; MECHANICAL-PROPERTIES; REDUCING AGENTS; OXIDE; CONCRETE; DISPERSION; MICROSTRUCTURE; PASTE; NANOSHEETS; NANO-TIO2; HYDRATION;
D O I
10.1016/j.conbuildmat.2024.139455
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Graphene-enhanced cement-based composites are gaining prominence in civil engineering due to their superior performance characteristics. However, the high production costs of graphene have limited their widespread adoption. Building on our previous work, we have developed a one-step method to produce water-stable, dispersed graphene nanofluid additives (GNAs) that can replace water in cement mixing, showcasing their potential for large-scale applications. This study evaluates the effects of GNAs on hydration, strength, shrinkage resistance and chloride impermeability of cement composite and investigates their long-term performance under various exposure conditions. We employ advanced microscopic characterization techniques, including scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), nitrogen adsorption/desorption (BET), and electrochemical impedance spectroscopy (EIS) to elucidate the modification mechanisms. Our results demonstrate that a 0.1 wt% concentration of graphene nanofluids significantly enhances the properties of cement-based composites, offering substantial benefits for marine civil engineering applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Enhancing and functionalizing cement mortar with one-step water-based graphene nanofluid additives
    Jiang, Jian-Wei
    Kong, Si -Cheng
    Zhu, Ji -Hua
    Pei, Chun
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 416
  • [2] Cement-based materials with graphene nanophase
    Dalla, P. T.
    Tragazikis, I. K.
    Exarchos, D. A.
    Dassios, K.
    Matikas, T. E.
    SMART MATERIALS AND NONDESTRUCTIVE EVALUATION FOR ENERGY SYSTEMS 2017, 2017, 10171
  • [3] Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide
    Liu, Changjiang
    Huang, Xiaochuan
    Wu, Yu-You
    Deng, Xiaowei
    Liu, Jian
    Zheng, Zhoulian
    Hui, David
    NANOTECHNOLOGY REVIEWS, 2020, 9 (01) : 155 - 169
  • [4] Assessing the combination of graphene and graphene oxide nanosheets in cement-based materials
    Bui, Quoc-Bao
    Bui, Thanh-Bao
    Nguyen, Ngoc-Tuan
    Le, Tuan
    da Silva, Yuri Ferreira
    Perre, Patrick
    Nguyen, Dang Mao
    CEMENT & CONCRETE COMPOSITES, 2024, 154
  • [5] Assessing the Impact of Graphene Nanoplatelets Aggregates on the Performance Characteristics of Cement-Based Materials
    Ahmed, Ahmed A.
    Shakouri, Mahmoud
    Abraham, Ojo Friday
    SUSTAINABILITY, 2025, 17 (06)
  • [6] Pore structure and durability of cement-based composites doped with graphene nanoplatelets
    Wang, Baomin
    Zhao, Ruying
    Zhang, Tingting
    MATERIALS EXPRESS, 2018, 8 (02) : 149 - 156
  • [7] Aggregation size effect of graphene oxide on its reinforcing efficiency to cement-based materials
    Lu, Zeyu
    Chen, Binmeng
    Leung, Christopher K. Y.
    Li, Zongjin
    Sun, Guoxing
    CEMENT & CONCRETE COMPOSITES, 2019, 100 : 85 - 91
  • [8] Effects of nanosilica on microstructure and durability of cement-based materials
    Fu, Qiang
    Zhao, Xu
    Zhang, Zhaorui
    Xu, Wenrui
    Niu, Ditao
    POWDER TECHNOLOGY, 2022, 404
  • [9] Reinforcing Mechanism of Graphene and Graphene Oxide Sheets on Cement-Based Materials
    Liu, Jintao
    Li, Qinghua
    Xu, Shilang
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2019, 31 (04)
  • [10] Advance on the dispersion treatment of graphene oxide and the graphene oxide modified cement-based materials
    Liu, Changjiang
    Huang, Xiaochuan
    Wu, Yu-You
    Deng, Xiaowei
    Zheng, Zhoulian
    Xu, Zhong
    Hui, David
    NANOTECHNOLOGY REVIEWS, 2021, 10 (01) : 34 - 49