Beyond-local neural information processing in neuronal networks

被引:1
作者
Balkenhol, Johannes
Haendel, Barbara [2 ,7 ]
Biswas, Sounak [9 ]
Grohmann, Johannes [5 ]
Kistowski, Joakim, V [5 ]
Prada, Juan [1 ]
Bosman, Conrado A. [3 ]
Ehrenreich, Hannelore [4 ]
Wojcik, Sonja M. [6 ]
Kounev, Samuel [5 ]
Blum, Robert [8 ]
Dandekar, Thomas [1 ,9 ]
机构
[1] Univ Wurzburg, Dept Bioinformat, Bioctr, D-97074 Wurzburg, Germany
[2] Univ Wurzburg, Dept Psychol 3, D-97070 Wurzburg, Germany
[3] Univ Amsterdam, Swammerdam Inst Life Sci, Ctr Neurosci, Cognit & Syst Neurosci Grp, NL-1105 BA Amsterdam, Netherlands
[4] Zentralinst Seel Gesundheit, Expt Med, D-68159 Mannheim, Germany
[5] Univ Wurzburg, Inst Comp Sci, Chair Software Engn Comp Sci 2, D-97074 Wurzburg, Germany
[6] Max Planck Inst Multidisziplinare Nat Wissensch, Neurosci, D-37075 Gottingen, Germany
[7] Univ Hosp Wurzburg, Dept Neurol, D-97080 Wurzburg, Germany
[8] European Mol Biol Lab EMBL, D-69012 Heidelberg, Germany
[9] Univ Wurzburg, Dept Theoret Phys 1, D-97074 Wurzburg, Germany
关键词
Neuronal field model; Information integration; Neural network; Columnar architecture; Parallel computing; Neuronal oscillations; Visual perception; GAMMA-BAND SYNCHRONIZATION; LEMPEL-ZIV COMPLEXITY; TRAVELING-WAVES; OSCILLATIONS; CONSCIOUSNESS; MECHANISMS; COGNITION; SLEEP; MODEL;
D O I
10.1016/j.csbj.2024.10.040
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
While there is much knowledge about local neuronal circuitry, considerably less is known about how neuronal input is integrated and combined across neuronal networks to encode higher order brain functions. One challenge lies in the large number of complex neural interactions. Neural networks use oscillating activity for information exchange between distributed nodes. To better understand building principles underlying the observation of synchronized oscillatory activity in a large-scale network, we developed a reductionistic neuronal network model. Fundamental building principles are laterally and temporally interconnected virtual nodes (microcircuits), wherein each node was modeled as a local oscillator. By this building principle, the neuronal network model can integrate information in time and space. The simulation gives rise to a wave interference pattern that spreads over all simulated columns in form of a travelling wave. The model design stabilizes states of efficient information processing across all participating neuronal equivalents. Model-specific oscillatory patterns, generated by complex input stimuli, were similar to electrophysiological high-frequency signals that we could confirm in the primate visual cortex during a visual perception task. Important oscillatory model pre-runners, limitations and strength of our reductionistic model are discussed. Our simple scalable model shows unique integration properties and successfully reproduces a variety of biological phenomena such as harmonics, coherence patterns, frequency-speed relationships, and oscillatory activities. We suggest that our scalable model simulates aspects of a basic building principle underlying oscillatory, large-scale integration of information in small and large brains.
引用
收藏
页码:4288 / 4305
页数:18
相关论文
共 73 条
[1]   Analysis of EEG background activity in Alzheimer's disease patients with Lempel-Ziv complexity and central tendency measure [J].
Abásolo, D ;
Hornero, R ;
Gómez, C ;
García, M ;
López, M .
MEDICAL ENGINEERING & PHYSICS, 2006, 28 (04) :315-322
[2]   Lempel-Ziv complexity of cortical activity during sleep and waking in rats [J].
Abasolo, Daniel ;
Simons, Samantha ;
da Silva, Rita Morgado ;
Tononi, Giulio ;
Vyazovskiy, Vladyslav V. .
JOURNAL OF NEUROPHYSIOLOGY, 2015, 113 (07) :2742-2752
[3]   Neural assemblies coordinated by cortical waves are associated with waking and hallucinatory brain states [J].
Aggarwal, Adeeti ;
Luo, Jennifer ;
Chung, Helen ;
Contreras, Diego ;
Kelz, Max B. ;
Proekt, Alex .
CELL REPORTS, 2024, 43 (04)
[4]   Critical integration in neural and cognitive systems: Beyond power-law scaling as the hallmark of soft assembly [J].
Aguilera, Miguel ;
Di Paolo, Ezequiel A. .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2021, 123 :230-237
[5]   Scaling Behaviour and Critical Phase Transitions in Integrated Information Theory [J].
Aguilera, Miguel .
ENTROPY, 2019, 21 (12)
[6]  
Ahmad S, arXiv
[7]  
[Anonymous], 1999, Netlogo
[8]   Power spectrum and critical exponents in the 2D stochastic Wilson-Cowan model [J].
Apicella, I. ;
Scarpetta, S. ;
de Arcangelis, L. ;
Sarracino, A. ;
de Candia, A. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[9]   Graph neural fields: A framework for spatiotemporal dynamical models on the human connectome [J].
Aqil, Marco ;
Atasoy, Selen ;
Kringelbach, Morten L. ;
Hindriks, Rikkert .
PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (01)
[10]   Long-range phase synchronization of high-frequency oscillations in human cortex [J].
Arnulfo, G. ;
Wang, S. H. ;
Myrov, V ;
Toselli, B. ;
Hirvonen, J. ;
Fato, M. M. ;
Nobili, L. ;
Cardinale, F. ;
Rubino, A. ;
Zhigalov, A. ;
Palva, S. ;
Palva, J. M. .
NATURE COMMUNICATIONS, 2020, 11 (01)