共 28 条
- [1] Leipnik R. B., Newton T. A., Double Strange Attractors In Rigid Body Motion, Phys. Lett. A, 86, 2, pp. 63-67, (1981)
- [2] Lofaro T., A Model of the Dynamics of the Newton-Leipnik Attractor, Int. J. Bifurc. Chaos, 7, 12, pp. 2723-2733, (1997)
- [3] Wang X., Tian L., Bifurcation Analysis and Linear Control of The Newton-Leipnik System, Chaos, Solitons and Fractals, 27, 1, pp. 31-38, (2006)
- [4] Richter H., Controlling Chaotic System with Multiple Strange Attractors, Phys. Lett. A, 300, 2-3, pp. 182-188, (2002)
- [5] Sheu L. J., Et al., Chaos in the Newton-Leipnik System with Fractional Order, Chaos, Solitons and Frac- tals, 36, 1, pp. 98-103, (2008)
- [6] Almutairi N., Saber S., Chaos Control and Numerical Solution of Time-Varying Fractional New- ton-Leipnik System Using Fractional Atangana-Baleanu Derivatives, AIMS Mathematics, 8, 11, pp. 25863-25887, (2023)
- [7] Chen H. K., Lin T. N., Synchronization of chaotic Symmetric Gyros by One-Way Coupling Conditions, ImechE J. Mech. Eng. Sci, 217, 3, pp. 331-340, (2003)
- [8] Almutairi N., Saber S., Application of a Time-Fractal Fractional Derivative with A Power-Law Kernel to the Burke-Shaw System Based on Newton's Interpolation Polynomials, Methods X, 12, (2024)
- [9] Petras I., The fractional-Order Lorenz-type systems: A Review, Fract. Calc. Appl. Anal, 25, 2, pp. 362-377, (2022)
- [10] Saber S., Control of Chaos in the Burke-Shaw System of Fractal-Fractional Order in the Sense of Ca- puto-Fabrizio, Journal of Applied Mathematics and Computational Mechanics, 23, 1, pp. 83-96, (2024)