CONTROLLED CHAOS OF A FRACTAL-FRACTIONAL NEWTON-LEIPNIK SYSTEM

被引:2
作者
Alsulami, Amer [1 ]
Alharb, Rasmiyah A. [2 ]
Albogami, Tahani M. [3 ]
Eljaneid, Nida H. E. [4 ]
Adam, Haroon D. S. [5 ]
Saber, Sayed [6 ,7 ]
机构
[1] Taif Univ, Turabah Univ Coll, Dept Math, Taif, Saudi Arabia
[2] Qassim Univ, Coll Sci, Dept Math, Qasim, Saudi Arabia
[3] Prince Mohammad Bin Fahd Univ, Coll Sci & Human Studies, Al Khobar, Saudi Arabia
[4] Univ Tabuk, Coll Sci, Dept Math, Tabuk, Saudi Arabia
[5] Najran Univ, Dept Basic Sci, Deanship Preparatory Year, Najran, Saudi Arabia
[6] Beni Suef Univ, Fac Sci, Dept Math & Stat, Bani Suwayf, Egypt
[7] Al Baha Univ, Dept Math, Baljurashi, Saudi Arabia
来源
THERMAL SCIENCE | 2024年 / 28卷 / 6B期
关键词
Newton-Leipnik systems; FFD; chaotic behavior; DIFFERENTIAL-EQUATIONS; NUMERICAL-METHOD; ATTRACTORS; ORDER;
D O I
10.2298/TSCI2406153A
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, fractal-fractional derivatives (FFD) with exponential decay laws kernels are applied to explain the chaotic behavior of a Newton-Leipnik system (NLS) with constant and time-varying derivatives. By using Caputo-Fabrizio fractal-fractional derivatives, fixed point theory verifies their existence and uniqueness. Using the implicit finite difference method, the Caputo-Fabrizio (CF) FF NLS is numerically solved. There are several numerical examples presented to illustrate the methods' applicability and efficiency. The CF fractal-fractional solutions are more general as compared to classical solutions, as shown in the graphics. Three per second, a larger step size for the discretized version where chaos is preserved, low cost electronic implementation, and flexibility are some of the unique features that make the suggested chaotic system novel.
引用
收藏
页码:5153 / 5160
页数:8
相关论文
共 28 条
  • [1] Leipnik R. B., Newton T. A., Double Strange Attractors In Rigid Body Motion, Phys. Lett. A, 86, 2, pp. 63-67, (1981)
  • [2] Lofaro T., A Model of the Dynamics of the Newton-Leipnik Attractor, Int. J. Bifurc. Chaos, 7, 12, pp. 2723-2733, (1997)
  • [3] Wang X., Tian L., Bifurcation Analysis and Linear Control of The Newton-Leipnik System, Chaos, Solitons and Fractals, 27, 1, pp. 31-38, (2006)
  • [4] Richter H., Controlling Chaotic System with Multiple Strange Attractors, Phys. Lett. A, 300, 2-3, pp. 182-188, (2002)
  • [5] Sheu L. J., Et al., Chaos in the Newton-Leipnik System with Fractional Order, Chaos, Solitons and Frac- tals, 36, 1, pp. 98-103, (2008)
  • [6] Almutairi N., Saber S., Chaos Control and Numerical Solution of Time-Varying Fractional New- ton-Leipnik System Using Fractional Atangana-Baleanu Derivatives, AIMS Mathematics, 8, 11, pp. 25863-25887, (2023)
  • [7] Chen H. K., Lin T. N., Synchronization of chaotic Symmetric Gyros by One-Way Coupling Conditions, ImechE J. Mech. Eng. Sci, 217, 3, pp. 331-340, (2003)
  • [8] Almutairi N., Saber S., Application of a Time-Fractal Fractional Derivative with A Power-Law Kernel to the Burke-Shaw System Based on Newton's Interpolation Polynomials, Methods X, 12, (2024)
  • [9] Petras I., The fractional-Order Lorenz-type systems: A Review, Fract. Calc. Appl. Anal, 25, 2, pp. 362-377, (2022)
  • [10] Saber S., Control of Chaos in the Burke-Shaw System of Fractal-Fractional Order in the Sense of Ca- puto-Fabrizio, Journal of Applied Mathematics and Computational Mechanics, 23, 1, pp. 83-96, (2024)