Multi-Fidelity Physics-Informed Generative Adversarial Network for Solving Partial Differential Equations

被引:2
|
作者
Taghizadeh, Mehdi [1 ]
Nabian, Mohammad Amin [2 ]
Alemazkoor, Negin [1 ]
机构
[1] Univ Virginia, Dept Civil & Environm Engn, Charlottesville, VA 22904 USA
[2] NVIDIA, Santa Clara, CA 95051 USA
关键词
artificial intelligence; machine learning for engineering applications; physics-based simulations; UNCERTAINTY QUANTIFICATION;
D O I
10.1115/1.4063986
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a novel method for solving partial differential equations using multi-fidelity physics-informed generative adversarial networks. Our approach incorporates physics supervision into the adversarial optimization process to guide the learning of the generator and discriminator models. The generator has two components: one that approximates the low-fidelity response of the input and another that combines the input and low-fidelity response to generate an approximation of high-fidelity responses. The discriminator identifies whether the input-output pairs accord not only with the actual high-fidelity response distribution, but also with physics. The effectiveness of the proposed method is demonstrated through numerical examples and compared to existing methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Feature-adjacent multi-fidelity physics-informed machine learning for partial differential equations
    Chen, Wenqian
    Stinis, Panos
    arXiv, 2023,
  • [2] Feature-adjacent multi-fidelity physics-informed machine learning for partial differential equations
    Chen, Wenqian
    Stinis, Panos
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 498
  • [3] PHYSICS-INFORMED GENERATIVE ADVERSARIAL NETWORKS FOR STOCHASTIC DIFFERENTIAL EQUATIONS
    Yang, Liu
    Zhang, Dongkun
    Karniadakis, George Em
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (01): : A292 - A317
  • [4] Solving spatiotemporal partial differential equations with Physics-informed Graph Neural Network
    Xiang, Zixue
    Peng, Wei
    Yao, Wen
    Liu, Xu
    Zhang, Xiaoya
    APPLIED SOFT COMPUTING, 2024, 155
  • [5] Adversarial Multi-task Learning Enhanced Physics-informed Neural Networks for Solving Partial Differential Equations
    Thanasutives, Pongpisit
    Numao, Masayuki
    Fukui, Ken-ichi
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [6] Multi-Step Physics-Informed Deep Operator Neural Network for Directly Solving Partial Differential Equations
    Wang, Jing
    Li, Yubo
    Wu, Anping
    Chen, Zheng
    Huang, Jun
    Wang, Qingfeng
    Liu, Feng
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [7] Physics-informed quantum neural network for solving forward and inverse problems of partial differential equations
    Xiao, Y.
    Yang, L. M.
    Shu, C.
    Chew, S. C.
    Khoo, B. C.
    Cui, Y. D.
    Liu, Y. Y.
    PHYSICS OF FLUIDS, 2024, 36 (09)
  • [8] A shallow physics-informed neural network for solving partial differential equations on static and evolving surfaces
    Hu, Wei-Fan
    Shih, Yi-Jun
    Lin, Te-Sheng
    Lai, Ming-Chih
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [9] Adaptive Learning Rate Residual Network Based on Physics-Informed for Solving Partial Differential Equations
    Chen, Miaomiao
    Niu, Ruiping
    Li, Ming
    Yue, Junhong
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2023, 20 (02)
  • [10] A Physics-Informed Recurrent Neural Network for Solving Time-Dependent Partial Differential Equations
    Liang, Ying
    Niu, Ruiping
    Yue, Junhong
    Lei, Min
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (10)