Ill-Posedness for the Cauchy Problem of the Modified Camassa-Holm Equation in B0∞,1

被引:0
作者
He, Zhen [1 ]
Yin, Zhaoyang [1 ,2 ]
机构
[1] Sun Yat sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Sun Yat sen Univ, Sch Sci, Shenzhen Campus, Shenzhen 518107, Peoples R China
基金
中国国家自然科学基金;
关键词
A modified Camassa-Holm equation; Ill-posedness; Norm inflation; SHALLOW-WATER EQUATION; WELL-POSEDNESS; GLOBAL EXISTENCE; WEAK SOLUTIONS; BLOWUP; TIME;
D O I
10.1007/s00021-024-00903-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the norm inflation and get the ill-posedness for the modified Camassa-Holm equation in B-infinity(0),1. Therefore we completed all well-posedness and ill-posedness problem for the modified Camassa-Holm equation in all critical spaces B-1/p (p, 1) with p is an element of [1, infinity].
引用
收藏
页数:16
相关论文
共 35 条
  • [21] On a generalized Camassa-Holm equation with the flow generated by velocity and its gradient
    He, Huijun
    Yin, Zhaoyang
    [J]. APPLICABLE ANALYSIS, 2017, 96 (04) : 679 - 701
  • [22] He Z, 2023, Arxiv, DOI arXiv:2308.09450
  • [23] Geometric Integrability of the Camassa-Holm Equation. II
    Hernandez Heredero, Rafael
    Reyes, Enrique G.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (13) : 3089 - 3125
  • [24] Himonas AA, 2014, ADV DIFFERENTIAL EQU, V19, P161
  • [25] Li JL, 2024, J MATH FLUID MECH, V26, DOI 10.1007/s00021-024-00874-3
  • [26] Sharp ill-posedness for the generalized Camassa-Holm equation in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (01)
  • [27] Well-posedness and continuity properties of the Degasperis-Procesi equation in critical Besov space
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    [J]. MONATSHEFTE FUR MATHEMATIK, 2023, 200 (02): : 301 - 313
  • [28] Ill-posedness for the Camassa-Holm and related equations in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 306 : 403 - 417
  • [29] Remarks on the well-posedness of Camassa-Holm type equations in Besov spaces
    Li, Jinlu
    Yin, Zhaoyang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (11) : 6125 - 6143
  • [30] Globally conservative solutions for the modified Camassa-Holm (MOCH) equation
    Luo, Zhaonan
    Qiao, Zhijun
    Yin, Zhaoyang
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (09)