Federated Learning with Privacy Preservation in Large-Scale Distributed Systems Using Differential Privacy and Homomorphic Encryption

被引:0
作者
Chen, Yue [1 ]
Yang, Yufei [1 ]
Liang, Yingwei [1 ]
Zhu, Taipeng [1 ]
Huang, Dehui [2 ]
机构
[1] Information Center, Guangdong Power Grid Co., Ltd., Guangdong, Guangzhou
[2] Chaozhou Power Supply Bureau Information Center, Guangdong Power Grid Co., Ltd., Guangdong, Chaozhou
来源
Informatica (Slovenia) | 2025年 / 49卷 / 13期
关键词
distributed environment; federated learning; large-scale; privacy preserving;
D O I
10.31449/inf.v49i13.7358
中图分类号
学科分类号
摘要
This study proposes a large-scale distributed privacy-preserving machine learning algorithm based on federated learning. The algorithm allows participants to jointly train high-quality models without sharing original data to meet the challenges brought by increasingly stringent data privacy and security regulations. To verify the performance of the federated learning system in a real-world environment, we built a distributed experimental platform consisting of multiple physical servers and evaluated it using several publicly available datasets such as MNIST, Federated EMNIST, and Federated CIFAR10/100. The experimental results show that the accuracy of the federated learning system is 97.3%, which is slightly lower than the 98.2% of the centralized learning method, but this is an acceptable trade-off considering the advantages of the federated learning method in protecting data privacy. In addition, our system only slightly drops to about 96.8% after the introduction of malicious clients, which proves the robustness of the federated learning system. Specifically, we adopt differential privacy technology, set the privacy budget ε=1.0, and add Gaussian noise to the model update to ensure that even if a malicious user accesses the model update, no sensitive information of any individual user can be inferred from it. The experimental conditions include but are not limited to: the communication protocol uses homomorphic encryption, the average communication volume per iteration is 150 MB, and the total communication volume is 30 GB; the average CPU utilization of the client is about 70%, and the GPU utilization is about 80%. These settings ensure the efficiency of the system's computing resources, and also reflect the balance between privacy protection and model performance. © 2025 Slovene Society Informatika. All rights reserved.
引用
收藏
页码:123 / 142
页数:19
相关论文
共 50 条
  • [31] Distributed additive encryption and quantization for privacy preserving federated deep learning
    Zhu, Hangyu
    Wang, Rui
    Jin, Yaochu
    Liang, Kaitai
    Ning, Jianting
    NEUROCOMPUTING, 2021, 463 : 309 - 327
  • [32] Blockchain-based federated learning with homomorphic encryption for privacy-preserving healthcare data sharing
    Firdaus, Muhammad
    Larasati, Harashta Tatimma
    Hyune-Rhee, Kyung
    INTERNET OF THINGS, 2025, 31
  • [33] Optimal Network Selection Method Using Federated Learning to Achieve Large-Scale Learning While Preserving Privacy
    Horita, Koki
    Yang, Bin
    Carette, Thomas
    Jimbo, Masanobu
    Nakao, Akihiro
    PROCEEDINGS OF THE 2022 IEEE 11TH INTERNATIONAL CONFERENCE ON CLOUD NETWORKING (IEEE CLOUDNET 2022), 2022, : 220 - 228
  • [34] Using Homomorphic Proxy Re-Encryption to Enhance Security and Privacy of Federated Learning-Based Intelligent Connected Vehicles
    Bai, Yang
    Rao, Yutang
    Wu, Hongyan
    Wang, Juan
    Yang, Wentao
    Xing, Gaojie
    Yang, Jiawei
    Yuan, Xiaoshu
    IET INFORMATION SECURITY, 2025, 2025 (01)
  • [35] FedNIC: enhancing privacy-preserving federated learning via homomorphic encryption offload on SmartNIC
    Choi, Sean
    Patel, Disha
    Tootaghaj, Diman Zad
    Cao, Lianjie
    Ahmed, Faraz
    Sharma, Puneet
    FRONTIERS IN COMPUTER SCIENCE, 2024, 6
  • [36] Efficient Fast Additive Homomorphic Encryption Cryptoprocessor for Privacy-preserving Federated Learning Aggregation
    Liu, Wenye
    Koca, Nazim Altar
    Chang, Chip-Hong
    2024 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2024,
  • [37] Masking and Homomorphic Encryption-Combined Secure Aggregation for Privacy-Preserving Federated Learning
    Park, Soyoung
    Lee, Junyoung
    Harada, Kaho
    Chi, Jeonghee
    ELECTRONICS, 2025, 14 (01):
  • [38] A Framework for Privacy-Preserving in IoV Using Federated Learning With Differential Privacy
    Adnan, Muhammad
    Syed, Madiha Haider
    Anjum, Adeel
    Rehman, Semeen
    IEEE ACCESS, 2025, 13 : 13507 - 13521
  • [39] Homomorphic Encryption-Based Privacy-Preserving Federated Learning in IoT-Enabled Healthcare System
    Zhang, Li
    Xu, Jianbo
    Vijayakumar, Pandi
    Sharma, Pradip Kumar
    Ghosh, Uttam
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 2864 - 2880
  • [40] A Privacy Preservation Framework Using Integration of Blockchain and Federated Learning
    Sameera K.M.
    Rafidha Rehiman K.A.
    Vinod P.
    SN Computer Science, 4 (6)