Improvement of Properties of Bio-Oil from Biomass Pyrolysis in Auger Reactor Coupled to Fluidized Catalytic Bed Reactor

被引:0
|
作者
Campusano, Balkydia [1 ]
Jabbour, Michael [1 ]
Abdelouahed, Lokmane [1 ]
Mignot, Melanie [2 ]
Devouge-Boyer, Christine [2 ]
Taouk, Bechara [1 ]
机构
[1] Univ Rouen Normandie, INSA Rouen Normandie, LSPC, UR 4704, F-76000 Rouen, France
[2] Univ Rouen Normandie, CNRS, COBRA UMR 6014, Rouen Normandie,INC3M FR 3038, F-76000 Rouen, France
关键词
pyrolysis; biomass; auger reactor; fluidized catalytic bed reactor zeolite; TEMPERATURE; HZSM-5; GAS; ZEOLITES; YIELDS; CHAR;
D O I
10.3390/pr12112368
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The goal of this research work was to investigate the improvement of bio-oil issued from beechwood biomass through catalytic de-oxygenation. Pyrolysis was conducted in an auger reactor and the catalytic treatment was performed in a fluidized catalytic bed reactor. Lab-synthesized Fe-HZSM-5 catalysts with different iron concentrations were tested. BET specific surface area, BJH pore size distribution, and FT-IR technologies were used to characterize the catalysts. Thermogravimetric analysis was used to measure the amount of coke deposited on the catalysts after use. Gas chromatography coupled to mass spectrometry (GC-MS), flame ionization detection (GC-FID), and thermal conductivity detection (GC-TCD) were used to identify and quantify the liquid and gaseous products. The pyrolysis temperature proved to be the most influential factor on the final products. It was observed that a pyrolysis temperature of 500 degrees C, vapor residence time of 18 s, and solid residence time of 2 min resulted in a maximum bio-oil yield of 53 wt.%. A high percentage of oxygenated compounds, such as phenolic compounds, guaiacols, and the carboxylic acid group, was present in this bio-oil. Catalytic treatment with the Fe-HZSM-5 catalysts promoted gas production at the expense of the bio-oil yield, however, the composition of the bio-oil was strongly modified. These properties of the treated bio-oil changed as a function of the Fe loading on the catalyst, with 5%Fe-HZSM-5 giving the best performance. A higher iron loading of 5%Fe-HZSM-5 could have a negative impact on the catalyst performance due to increased coke formation.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Flash pyrolysis of biomass for bio-oil in a fluidized bed reactor
    Wang, SR
    Luo, ZY
    Yu, CJ
    Liao, YF
    Hong, J
    Cen, KF
    Dong, LJ
    ENERGY AND ENVIRONMENT, VOLS 1 AND 2, 2003, : 245 - 250
  • [2] Cotton shell utilization as a source of biomass energy for bio-oil by flash pyrolysis on electrically heated fluidized bed reactor
    Madhu, P.
    Kanagasabapathy, H.
    Manickam, I. Neethi
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2016, 18 (01) : 146 - 155
  • [3] Bio-oil production from fast pyrolysis of Cladophora glomerata in a fluidized bed reactor
    Ebadi, A. G.
    Hisoriev, H.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2017, 49 (02): : 504 - 508
  • [4] Bio-Oil Production from Fast Pyrolysis of Cotton Stalk in Fluidized Bed Reactor
    Ali, Najaf
    Saleem, Mahmood
    Shahzad, Khurram
    Chughtai, Arshad
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2015, 40 (11) : 3019 - 3027
  • [5] Deoxygenation of Bio-oil during Pyrolysis of Biomass in the Presence of CaO in a Fluidized-Bed Reactor
    Lin, Yuyu
    Zhang, Chu
    Zhang, Mingchuan
    Zhang, Jian
    ENERGY & FUELS, 2010, 24 (10) : 5686 - 5695
  • [6] Jute stick pyrolysis for bio-oil production in fluidized bed reactor
    Asadullah, M.
    Rahman, M. Anisur
    Ali, M. Mohsin
    Motin, M. Abdul
    Sultan, M. Borhanus
    Alam, M. Robiul
    Rahman, M. Sahedur
    BIORESOURCE TECHNOLOGY, 2008, 99 (01) : 44 - 50
  • [7] Production and characterisation of bio-oil from biomass fast pyrolysis in a fluidised bed reactor
    Liu Ronghou
    Wang Hua
    Li Tianshu
    Zhang Chunmei
    Wu Lijuan
    INTERNATIONAL JOURNAL OF GLOBAL ENERGY ISSUES, 2007, 28 (04) : 347 - 356
  • [8] Yield and properties of bio-oil from the pyrolysis of mallee leaves in a fluidised-bed reactor
    He, Min
    Mourant, Daniel
    Gunawan, Richard
    Lievens, Caroline
    Wang, Xiao Shan
    Ling, Kaicheng
    Bartle, John
    Li, Chun-Zhu
    FUEL, 2012, 102 : 506 - 513
  • [9] Bio-Oil Production from Fast Pyrolysis of Cotton Stalk in Fluidized Bed Reactor
    Najaf Ali
    Mahmood Saleem
    Khurram Shahzad
    Arshad Chughtai
    Arabian Journal for Science and Engineering, 2015, 40 : 3019 - 3027
  • [10] Hydrogen Production via Catalytic Steam Reforming of Fast Pyrolysis Bio-oil in a Fluidized-Bed Reactor
    Xu, Qingli
    Lan, Ping
    Zhang, Baozhen
    Ren, Zhizhong
    Yan, Yongjie
    ENERGY & FUELS, 2010, 24 (12) : 6456 - 6462