共 30 条
[21]
Ortiz-Gomez F.G., Salas-Natera M.A., Martinez R., Landeros-Ayala S., Optimization in VHTS satellite system design with irregular beam coverage for non-uniform traffic distribution, Remote. Sens., 13, 13, (2021)
[22]
Honnaiah P.J., Maturo N., Chatzinotas S., Kisseleff S., Krause J., Demand-based adaptive multi-beam pattern and footprint planning for high throughput GEO satellite systems, IEEE Open J. Commun. Soc., 2, pp. 1526-1540, (2021)
[23]
Arthur D., Vassilvitskii S., K-means++: The advantages of careful seeding, Proc. 18th Annu. ACMSIAM Symp. Discr. Algorithms, pp. 1027-1035, (2007)
[24]
Zhang Y., Zhang D., Shi H., K-means clustering based on self-adaptive weight, Proc. 2012 2nd Int. Conf. Computer Science and Network Technology, pp. 1540-1544, (2012)
[25]
Rahman M.M., Masud M.A., Improved k-means Algorithm using Weight Estimation, Proc. Int. Conf. Automation, Control and Mechatronics for Industry 4.0 (ACMI), pp. 1-6, (2021)
[26]
Bezdek J.C., Objective function clustering, Pattern Recognition with Fuzzy Objective Function Algorithms, pp. 43-93, (1981)
[27]
Du Q., Faber V., Gunzburger M., Centroidal Voronoi tessellations: Applications and algorithms, SIAM Rev., 41, 4, pp. 637-676, (1999)
[28]
Moriguchi M., Sugihara K., Constructing centroidal Voronoi tessellations on surface meshes, Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence, pp. 235-245, (2009)
[29]
Reem D., An algorithm for computing Voronoi diagrams of general generators in general normed spaces, Proc. Sixth Int. Symp. on Voronoi Diagrams, pp. 144-152, (2009)
[30]
Parker W.V., Pryor J.E., Polygons of greatest area inscribed in an ellipse, Am. Math. Mon., 51, 4, pp. 205-209, (1944)