FedDSS: A data-similarity approach for client selection in horizontal federated learning

被引:0
|
作者
Nguyen, Tuong Minh [1 ]
Poh, Kim Leng [1 ]
Chong, Shu-Ling [2 ]
Lee, Jan Hau [3 ,4 ]
机构
[1] Natl Univ Singapore, Dept Ind Syst Engn & Management, Singapore 117576, Singapore
[2] KK Womens & Childrens Hosp, Childrens Emergency, Singapore 229899, Singapore
[3] Duke NUS Med Sch, SingHlth Duke NUS Paediat Acad Clin Programme, Singapore 169857, Singapore
[4] KK Womens & Childrens Hosp, Childrens Intens Care Unit, Singapore 229899, Singapore
关键词
Federated learning; Non-i.i.d; Client selection; Data similarity; Pediatric sepsis;
D O I
10.1016/j.ijmedinf.2024.105650
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Background and objective: Federated learning (FL) is an emerging distributed learning framework allowing multiple clients (hospitals, institutions, smart devices, etc.) to collaboratively train a centralized machine learning model without disclosing personal data. It has the potential to address several healthcare challenges, including a lack of training data, data privacy, and security concerns. However, model learning under FL is affected by non-i.i.d. data, leading to severe model divergence and reduced performance due to the varying client's data distributions. To address this problem, we propose FedDSS, Federated Data Similarity Selection, a framework that uses a data-similarity approach to select clients, without compromising client data privacy. Methods: FedDSS comprises a statistical-based data similarity metric, a N-similar-neighbor network, and a network-based selection strategy. We assessed FedDSS' performance against FedAvg's in i.i.d. and non-i.i.d. settings with two public pediatric sepsis datasets (PICD and MIMICIII). Selection fairness was measured using entropy. . Simulations were repeated five times to evaluate average loss, true positive rate (TPR), and entropy. . Results: In i.i.d setting on PICD, FedDSS achieved a higher TPR starting from the 9th round and surpassing 0.6 three rounds earlier than FedAvg. On MIMICIII, FedDSS's loss decreases significantly from the 13th round, with TPR > 0.8 by the 2nd round, two rounds ahead of FedAvg (at the 4th round). In the non-i.i.d. setting, FedDSS achieved TPR > 0.7 by the 4th and > 0.8 by the 7th round, earlier than FedAvg (at the 5th and 11th rounds). In both settings, FedDSS showed reasonable fairness ( entropy of 2.2 and 2.1). Conclusion: We demonstrated that FedDSS contributes to improved learning in FL by achieving faster convergence, reaching the desired TPR with fewer communication rounds, and potentially enhancing sepsis prediction (TPR) over FedAvg.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Client Selection with Bandwidth Allocation in Federated Learning
    Kuang, Junqian
    Yang, Miao
    Zhu, Hongbin
    Qian, Hua
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [32] An Efficient Client Selection for Wireless Federated Learning
    Chen, Jingyi
    Wang, Qiang
    Zhang, Wenqi
    2023 28TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS, APCC 2023, 2023, : 291 - 296
  • [33] EFFICIENT CLIENT CONTRIBUTION EVALUATION FOR HORIZONTAL FEDERATED LEARNING
    Zhao, Jie
    Zhu, Xinghua
    Wang, Jianzong
    Xiao, Jing
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3060 - 3064
  • [34] Client Selection for Federated Learning With Label Noise
    Yang, Miao
    Qian, Hua
    Wang, Ximin
    Zhou, Yong
    Zhu, Honghin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 2193 - 2197
  • [35] FedECS: Client Selection for Optimizing Computing Energy in Federated Learning
    Han, Shuo
    Zhang, Chenyu
    Wang, Luhan
    Zheng, Wei
    Wen, Xiangming
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [36] Adaptive client selection and model aggregation for heterogeneous federated learning
    Zhai, Rui
    Jin, Haozhe
    Gong, Wei
    Lu, Ke
    Liu, Yanhong
    Song, Yalin
    Yu, Junyang
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [37] Adaptive client selection with personalization for communication efficient Federated Learning
    de Souza, Allan M.
    Maciel, Filipe
    da Costa, Joahannes B. D.
    Bittencourt, Luiz F.
    Cerqueira, Eduardo
    Loureiro, Antonio A. F.
    Villas, Leandro A.
    AD HOC NETWORKS, 2024, 157
  • [38] Client Selection Mechanism for Federated Learning Based on Class Imbalance
    Zhang, Linlin
    Lin, Congjie
    Bie, Zhangshuai
    Li, Shuo
    Bi, Xuehua
    Zhao, Kai
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT 1, 2025, 15031 : 266 - 278
  • [39] Federated Learning with Personalized Differential Privacy Combining Client Selection
    Xie, Yunting
    Zhang, Lan
    2022 8TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS, BIGCOM, 2022, : 79 - 87
  • [40] Review on Research Trends of Optimization for Client Selection in Federated Learning
    Kim, Jaemin
    Song, Chihyun
    Paek, Jeongyeup
    Kwon, Jung-Hyok
    Cho, Sungrae
    38TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN 2024, 2024, : 287 - 289