FedDSS: A data-similarity approach for client selection in horizontal federated learning

被引:0
|
作者
Nguyen, Tuong Minh [1 ]
Poh, Kim Leng [1 ]
Chong, Shu-Ling [2 ]
Lee, Jan Hau [3 ,4 ]
机构
[1] Natl Univ Singapore, Dept Ind Syst Engn & Management, Singapore 117576, Singapore
[2] KK Womens & Childrens Hosp, Childrens Emergency, Singapore 229899, Singapore
[3] Duke NUS Med Sch, SingHlth Duke NUS Paediat Acad Clin Programme, Singapore 169857, Singapore
[4] KK Womens & Childrens Hosp, Childrens Intens Care Unit, Singapore 229899, Singapore
关键词
Federated learning; Non-i.i.d; Client selection; Data similarity; Pediatric sepsis;
D O I
10.1016/j.ijmedinf.2024.105650
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Background and objective: Federated learning (FL) is an emerging distributed learning framework allowing multiple clients (hospitals, institutions, smart devices, etc.) to collaboratively train a centralized machine learning model without disclosing personal data. It has the potential to address several healthcare challenges, including a lack of training data, data privacy, and security concerns. However, model learning under FL is affected by non-i.i.d. data, leading to severe model divergence and reduced performance due to the varying client's data distributions. To address this problem, we propose FedDSS, Federated Data Similarity Selection, a framework that uses a data-similarity approach to select clients, without compromising client data privacy. Methods: FedDSS comprises a statistical-based data similarity metric, a N-similar-neighbor network, and a network-based selection strategy. We assessed FedDSS' performance against FedAvg's in i.i.d. and non-i.i.d. settings with two public pediatric sepsis datasets (PICD and MIMICIII). Selection fairness was measured using entropy. . Simulations were repeated five times to evaluate average loss, true positive rate (TPR), and entropy. . Results: In i.i.d setting on PICD, FedDSS achieved a higher TPR starting from the 9th round and surpassing 0.6 three rounds earlier than FedAvg. On MIMICIII, FedDSS's loss decreases significantly from the 13th round, with TPR > 0.8 by the 2nd round, two rounds ahead of FedAvg (at the 4th round). In the non-i.i.d. setting, FedDSS achieved TPR > 0.7 by the 4th and > 0.8 by the 7th round, earlier than FedAvg (at the 5th and 11th rounds). In both settings, FedDSS showed reasonable fairness ( entropy of 2.2 and 2.1). Conclusion: We demonstrated that FedDSS contributes to improved learning in FL by achieving faster convergence, reaching the desired TPR with fewer communication rounds, and potentially enhancing sepsis prediction (TPR) over FedAvg.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A Robust Client Selection Mechanism for Federated Learning Environments
    Veiga, Rafael
    Sousa, John
    Morais, Renan
    Bastos, Lucas
    Lobato, Wellington
    Rosário, Denis
    Cerqueira, Eduardo
    Journal of the Brazilian Computer Society, 30 (01): : 444 - 455
  • [22] Client Selection in Federated Learning under Imperfections in Environment
    Rai, Sumit
    Kumari, Arti
    Prasad, Dilip K.
    AI, 2022, 3 (01) : 124 - 145
  • [23] Client Selection for Generalization in Accelerated Federated Learning: A Multi-Armed Bandit Approach
    Ben Ami, Dan
    Cohen, Kobi
    Zhao, Qing
    IEEE ACCESS, 2025, 13 : 33697 - 33713
  • [24] Scout:An Efficient Federated Learning Client Selection Algorithm Driven by Heterogeneous Data and Resource
    Zhang, Ruilin
    Xu, Zhenan
    Yin, Hao
    2023 IEEE INTERNATIONAL CONFERENCE ON JOINT CLOUD COMPUTING, JCC, 2023, : 46 - 49
  • [25] Pretraining Client Selection Algorithm Based on a Data Distribution Evaluation Model in Federated Learning
    Xu, Chang
    Liu, Hong
    Li, Kexin
    Feng, Wanglei
    Qi, Wei
    IEEE ACCESS, 2024, 12 : 63958 - 63966
  • [26] Client Selection for Federated Learning With Non-IID Data in Mobile Edge Computing
    Zhang, Wenyu
    Wang, Xiumin
    Zhou, Pan
    Wu, Weiwei
    Zhang, Xinglin
    IEEE ACCESS, 2021, 9 : 24462 - 24474
  • [27] Data-Centric Client Selection for Federated Learning Over Distributed Edge Networks
    Saha, Rituparna
    Misra, Sudip
    Chakraborty, Aishwariya
    Chatterjee, Chandranath
    Deb, Pallav Kumar
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2023, 34 (02) : 675 - 686
  • [28] TiFLCS-MARP: Client selection and model pricing for federated learning in data markets
    Sun, Yongjiao
    Li, Boyang
    Yang, Kai
    Bi, Xin
    Zhao, Xiangning
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 245
  • [29] Client Selection Method for Federated Learning Based on Grouping Reinforcement Learning
    Li, Guo-ming
    Liu, Wai-xi
    Guo, Zhen-zheng
    Chen, Dao-xiao
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 327 - 332
  • [30] FedCLS:A federated learning client selection algorithm based on cluster label information
    Li, Changsong
    Wu, Hao
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,