CFFANet: category feature fusion and attention mechanism network for retinal vessel segmentation

被引:0
作者
Chen, Qiyu [1 ]
Wang, Jianming [1 ,2 ]
Yin, Jiting [3 ]
Yang, Zizhong [2 ]
机构
[1] Dali Univ, Sch Math & Comp Sci, Dali 671003, Yunnan, Peoples R China
[2] Dali Univ, Yunnan Prov Key Lab Entomol Biopharmaceut R&D, Dali 671003, Yunnan, Peoples R China
[3] Dali Forestry & Grassland Sci Res Inst, Dali 671000, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Attention mechanisms; Category features; Deep learning; Multi-scale information; Retinal vessel segmentation; BLOOD-VESSELS; IMAGES; TOOL;
D O I
10.1007/s00530-024-01535-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Retinal vessel segmentation is a computer-aided diagnostic method for ophthalmic disease analysis. Owing to the complex structure of the retinal vasculature, it is difficult for the segmentation network to capture effective features, and the semantic gap between different layers of features leads to insufficient feature fusion and thus makes segmentation difficult. In this paper, we propose a new segmentation network called CFFANet. Firstly, to capture accurate and sufficient global and local features, we design a Multi-scale Residual Pooling Module. In addition, a Category Feature Fusion Module is proposed to fuse category features at different stages to reduce the semantic gap between layers. Finally, a Frequency Channel Fusion Cross Attention Module is incorporated to reduce redundant semantic information during feature fusion. We conducted experiments on the DRIVE, CHASEDB1 and STARE datasets. The Dice and MIoU scores of the CFFANet network on the above datasets are 83.0, 82.9, 84.2, 84.1, and 84.1, 84.5. The ablation experiments also validate the effectiveness of the main modules in the network. The experiments show the value of the method in retinal vessel segmentation tasks.
引用
收藏
页数:15
相关论文
共 39 条
[1]  
Abramoff Michael D, 2010, IEEE Rev Biomed Eng, V3, P169, DOI 10.1109/RBME.2010.2084567
[2]   Fast and Accurate Retinal Identification System: Using Retinal Blood Vasculature Landmarks [J].
Aleem, Sidra ;
Sheng, Bin ;
Li, Ping ;
Yang, Po ;
Feng, David Dagan .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (07) :4099-4110
[3]   Recurrent residual U-Net for medical image segmentation [J].
Alom, Md Zahangir ;
Yakopcic, Chris ;
Hasan, Mahmudul ;
Taha, Tarek M. ;
Asari, Vijayan K. .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
[4]   Dual Cross-Attention for medical image segmentation [J].
Ates, Gorkem Can ;
Mohan, Prasoon ;
Celik, Emrah .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
[5]  
Can A, 1999, IEEE Trans Inf Technol Biomed, V3, P125, DOI 10.1109/4233.767088
[6]   DETECTION OF BLOOD-VESSELS IN RETINAL IMAGES USING TWO-DIMENSIONAL MATCHED-FILTERS [J].
CHAUDHURI, S ;
CHATTERJEE, S ;
KATZ, N ;
NELSON, M ;
GOLDBAUM, M .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1989, 8 (03) :263-269
[7]   Blood vessel segmentation methodologies in retinal images - A survey [J].
Fraz, M. M. ;
Remagnino, P. ;
Hoppe, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. ;
Barman, S. A. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) :407-433
[8]   An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation [J].
Fraz, Muhammad Moazam ;
Remagnino, Paolo ;
Hoppe, Andreas ;
Uyyanonvara, Bunyarit ;
Rudnicka, Alicja R. ;
Owen, Christopher G. ;
Barman, Sarah A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (09) :2538-2548
[9]   CE-Net: Context Encoder Network for 2D Medical Image Segmentation [J].
Gu, Zaiwang ;
Cheng, Jun ;
Fu, Huazhu ;
Zhou, Kang ;
Hao, Huaying ;
Zhao, Yitian ;
Zhang, Tianyang ;
Gao, Shenghua ;
Liu, Jiang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) :2281-2292
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778