Correlated Decoding of Logical Algorithms with Transversal Gates

被引:4
作者
Cain, Madelyn [1 ]
Zhao, Chen [1 ,2 ]
Zhou, Hengyun [1 ,2 ]
Meister, Nadine [1 ]
Ataides, J. Pablo Bonilla [1 ]
Jaffe, Arthur [1 ]
Bluvstein, Dolev [1 ]
Lukin, Mikhail D. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] QuEra Comp Inc, Boston, MA 02135 USA
基金
美国国家科学基金会;
关键词
QUANTUM ERROR-CORRECTION; ERASURE CONVERSION; MINIMUM DISTANCE; LDPC CODES; INTRACTABILITY; BIT;
D O I
10.1103/PhysRevLett.133.240602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum error correction is believed to be essential for scalable quantum computation, but its implementation is challenging due to its considerable space-time overhead. Motivated by recent experiments demonstrating efficient manipulation of logical qubits using transversal gates [Bluvstein et al., Nature (London) 626, 58 (2024)], we show that the performance of logical algorithms can be substantially improved by decoding the qubits jointly to account for error propagation during transversal entangling gates. We find that such correlated decoding improves the performance of both Clifford and non-Clifford transversal entangling gates, and explore two decoders offering different computational runtimes and accuracies. In particular, by leveraging the deterministic propagation of stabilizer measurement errors, we find that correlated decoding enables the number of noisy syndrome extraction rounds between gates to be reduced from O(d) to O(1) in transversal Clifford circuits, where d is the code distance. We verify numerically that this approach substantially reduces the space-time cost of deep logical Clifford circuits. These results demonstrate that correlated decoding provides a major advantage in early fault-tolerant computation, as realized in recent experiments, and further indicate it has considerable potential to reduce the space-time cost in large-scale logical algorithms.
引用
收藏
页数:7
相关论文
共 89 条
[1]  
Cuccaro SA, 2004, Arxiv, DOI arXiv:quant-ph/0410184
[2]   Improved simulation of stabilizer circuits [J].
Aaronson, S ;
Gottesman, D .
PHYSICAL REVIEW A, 2004, 70 (05) :052328-1
[3]  
Bausch J., 2023, arXiv, DOI DOI 10.48550/ARXIV.2310.05900
[4]   INHERENT INTRACTABILITY OF CERTAIN CODING PROBLEMS [J].
BERLEKAMP, ER ;
MCELIECE, RJ ;
VANTILBORG, HCA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (03) :384-386
[5]   Cost of Universality: A Comparative Study of the Overhead of State Distillation and Code Switching with Color Codes [J].
Beverland, Michael E. ;
Kubica, Aleksander ;
Svore, Krysta M. .
PRX QUANTUM, 2021, 2 (02)
[6]   Logical quantum processor based on reconfigurable atom arrays [J].
Bluvstein, Dolev ;
Evered, Simon J. ;
Geim, Alexandra A. ;
Li, Sophie H. ;
Zhou, Hengyun ;
Manovitz, Tom ;
Ebadi, Sepehr ;
Cain, Madelyn ;
Kalinowski, Marcin ;
Hangleiter, Dominik ;
Ataides, J. Pablo Bonilla ;
Maskara, Nishad ;
Cong, Iris ;
Gao, Xun ;
Sales Rodriguez, Pedro ;
Karolyshyn, Thomas ;
Semeghini, Giulia ;
Gullans, Michael J. ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2024, 626 (7997) :58-65
[7]   A quantum processor based on coherent transport of entangled atom arrays [J].
Bluvstein, Dolev ;
Levine, Harry ;
Semeghini, Giulia ;
Wang, Tout T. ;
Ebadi, Sepehr ;
Kalinowski, Marcin ;
Keesling, Alexander ;
Maskara, Nishad ;
Pichler, Hannes ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2022, 604 (7906) :451-+
[8]  
Bombín H, 2023, Arxiv, DOI [arXiv:2303.04846, 10.48550/ARXIV.2303.04846]
[9]  
Bombin H, 2018, Arxiv, DOI arXiv:1810.09575
[10]   Universal quantum computation with ideal Clifford gates and noisy ancillas [J].
Bravyi, S ;
Kitaev, A .
PHYSICAL REVIEW A, 2005, 71 (02)