LoadSeer: Exploiting Tensor Graph Convolutional Network for Power Load Forecasting With Spatio-Temporal Characteristics

被引:0
|
作者
Zhang, Jiahao [1 ]
Yu, Bin [1 ]
Lai, Hanbin [1 ]
Liu, Lin [1 ]
Zhou, Jinghui [1 ]
Lou, Fengliang [1 ]
Ni, Yili [1 ]
Peng, Yan [2 ]
Yu, Ziheng [2 ]
机构
[1] State Grid Zhejiang Hangzhou Xiaoshan Dist Power S, Hangzhou 310014, Peoples R China
[2] Shanghai Univ Elect Power, Dept Comp Sci & Technol, Shanghai 201399, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Time series analysis; Tensors; Load forecasting; Vectors; Predictive models; Feature extraction; Load modeling; Data models; Transformers; Roads; Tensor time series; graph convolutional network; spatio-temporal sequence; electricity load forecasting; MODEL; SYSTEM;
D O I
10.1109/ACCESS.2024.3514174
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Power load forecasting plays a crucial role in ensuring the stable operation of the power system and avoiding system collapse or resource waste caused by power shortages or surpluses. However, the complex spatio-temporal property of power load makes it difficult to predict, which poses a great challenge to the power system. Existing spatio-temporal prediction methods can only handle one factor in each dimension of time and space. In reality, power load is influenced by various factors. Especially in terms of time dimension, crowd flow, weather, and historical load all have significant impacts on load forecasting. Inspired by tensor time series, considering the structure of spatial geographic location, we propose Tensor Graph Convolutional Network for Power Load Forecasting, LoadSeer. A distance adjacency matrix is designed to represent the geographical location relationship and land use nature. A spatio-temporal processing layer integrating graph convolution module (GCN) and T-Transformer is mapped out to extract the spatio-temporal features, which are then sent to the fully connected layer to provide the refined expression. The experimental results on three public datasets, PeMSD4, PeMSD7, and PeMSD8 show that our proposed method outperforms baseline models on all indicators. To further validate the effectiveness of our proposed approach, we apply LoadSeer to real load data during the Asian Games in a certain city, and the results also demonstrate the superiority of our method.
引用
收藏
页码:190337 / 190346
页数:10
相关论文
共 50 条
  • [41] Spatio-Temporal Short Term Load Forecasting Using Graph Neural Networks
    Mansoor, Haris
    Shabbir, Madiha
    Ali, Muhammad Yasir
    Rauf, Huzaifa
    Khalid, Muhammad
    Arshad, Naveed
    2023 12TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS, ICRERA, 2023, : 320 - 323
  • [42] Spatio-temporal graph mixformer for traffic forecasting
    Lablack, Mourad
    Shen, Yanming
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 228
  • [43] ADSTGCN: A Dynamic Adaptive Deeper Spatio-Temporal Graph Convolutional Network for Multi-Step Traffic Forecasting
    Cui, Zhengyan
    Zhang, Junjun
    Noh, Giseop
    Park, Hyun Jun
    SENSORS, 2023, 23 (15)
  • [44] Spatio-Temporal Heterogeneous Graph-Based Convolutional Networks for Traffic Flow Forecasting
    Ma, Zhaobin
    Lv, Zhiqiang
    Xin, Xiaoyang
    Cheng, Zesheng
    Xia, Fengqian
    Li, Jianbo
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (08) : 120 - 133
  • [45] Network traffic prediction based on feature fusion spatio-temporal graph convolutional network
    Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing
    100876, China
    不详
    100876, China
    Proc SPIE Int Soc Opt Eng,
  • [46] UAV network intrusion detection method based on spatio-temporal graph convolutional network
    Chen Z.
    Lyu N.
    Chen K.
    Zhang Y.
    Gao W.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (05): : 1068 - 1076
  • [47] Traffic Network Socialization: An Adaptive Spatio-Temporal Graph Convolutional Network for Traffic Prediction
    Wang, Rong
    Li, Miaofei
    Zhao, Jiankuan
    Cheng, Anyu
    Jia, Chaolong
    IEEE Transactions on Emerging Topics in Computing, 2024,
  • [48] STCGCN: a spatio-temporal complete graph convolutional network for remaining useful life prediction of power transformer
    Xing, Mengda
    Ding, Weilong
    Zhang, Tianpu
    Li, Han
    INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2023, 19 (02) : 102 - 117
  • [49] Long-term wind power forecasting with series decomposition and spatio-temporal graph neural network
    Yang, Yujie
    Chen, Junhong
    Zheng, Wenbin
    Zhang, Fan
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (15) : 3470 - 3484
  • [50] A Hierarchical Spatio-Temporal Graph Convolutional Neural Network for Anomaly Detection in Videos
    Zeng, Xianlin
    Jiang, Yalong
    Ding, Wenrui
    Li, Hongguang
    Hao, Yafeng
    Qiu, Zifeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (01) : 200 - 212