LoadSeer: Exploiting Tensor Graph Convolutional Network for Power Load Forecasting With Spatio-Temporal Characteristics

被引:0
|
作者
Zhang, Jiahao [1 ]
Yu, Bin [1 ]
Lai, Hanbin [1 ]
Liu, Lin [1 ]
Zhou, Jinghui [1 ]
Lou, Fengliang [1 ]
Ni, Yili [1 ]
Peng, Yan [2 ]
Yu, Ziheng [2 ]
机构
[1] State Grid Zhejiang Hangzhou Xiaoshan Dist Power S, Hangzhou 310014, Peoples R China
[2] Shanghai Univ Elect Power, Dept Comp Sci & Technol, Shanghai 201399, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Time series analysis; Tensors; Load forecasting; Vectors; Predictive models; Feature extraction; Load modeling; Data models; Transformers; Roads; Tensor time series; graph convolutional network; spatio-temporal sequence; electricity load forecasting; MODEL; SYSTEM;
D O I
10.1109/ACCESS.2024.3514174
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Power load forecasting plays a crucial role in ensuring the stable operation of the power system and avoiding system collapse or resource waste caused by power shortages or surpluses. However, the complex spatio-temporal property of power load makes it difficult to predict, which poses a great challenge to the power system. Existing spatio-temporal prediction methods can only handle one factor in each dimension of time and space. In reality, power load is influenced by various factors. Especially in terms of time dimension, crowd flow, weather, and historical load all have significant impacts on load forecasting. Inspired by tensor time series, considering the structure of spatial geographic location, we propose Tensor Graph Convolutional Network for Power Load Forecasting, LoadSeer. A distance adjacency matrix is designed to represent the geographical location relationship and land use nature. A spatio-temporal processing layer integrating graph convolution module (GCN) and T-Transformer is mapped out to extract the spatio-temporal features, which are then sent to the fully connected layer to provide the refined expression. The experimental results on three public datasets, PeMSD4, PeMSD7, and PeMSD8 show that our proposed method outperforms baseline models on all indicators. To further validate the effectiveness of our proposed approach, we apply LoadSeer to real load data during the Asian Games in a certain city, and the results also demonstrate the superiority of our method.
引用
收藏
页码:190337 / 190346
页数:10
相关论文
共 50 条
  • [31] STCGCN: a spatio-temporal complete graph convolutional network for remaining useful life prediction of power transformer
    Xing, Mengda
    Ding, Weilong
    Zhang, Tianpu
    Li, Han
    INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2023, 19 (02) : 102 - 117
  • [32] Graph Convolutional Network-Assisted SST and Chl-a Prediction With Multicharacteristics Modeling of Spatio-Temporal Evolution
    Ye, Min
    Li, Bohan
    Nie, Jie
    Wen, Qi
    Wei, Zhiqiang
    Yang, Lie-Liang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 14
  • [33] UAV network intrusion detection method based on spatio-temporal graph convolutional network
    Chen Z.
    Lyu N.
    Chen K.
    Zhang Y.
    Gao W.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (05): : 1068 - 1076
  • [34] Federated Spatio-Temporal Traffic Flow Prediction Based on Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 221 - 225
  • [35] Robust Traffic Prediction Using Probabilistic Spatio-Temporal Graph Convolutional Network
    Karim, Atkia Akila
    Nower, Naushin
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2024, 2024, 2141 : 259 - 273
  • [36] Dynamic Spatio-Temporal Graph Fusion Convolutional Network for Urban Traffic Prediction
    Ma, Haodong
    Qin, Xizhong
    Jia, Yuan
    Zhou, Junwei
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [37] A Hierarchical Spatio-Temporal Graph Convolutional Neural Network for Anomaly Detection in Videos
    Zeng, Xianlin
    Jiang, Yalong
    Ding, Wenrui
    Li, Hongguang
    Hao, Yafeng
    Qiu, Zifeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (01) : 200 - 212
  • [38] Adaptive Joint Spatio-Temporal Graph Learning Network for Traffic Data Forecasting
    Wang, Tianyi
    Chen, Shu-ching
    ACM TRANSACTIONS ON SPATIAL ALGORITHMS AND SYSTEMS, 2024, 10 (03)
  • [39] Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph Neural Network
    Roy, Amit
    Roy, Kashob Kumar
    Ali, Amin Ahsan
    Amin, M. Ashraful
    Rahman, A. K. M. Mahbubur
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [40] DMGSTCN: Dynamic Multigraph Spatio-Temporal Convolution Network for Traffic Forecasting
    Qin, Yanjun
    Tao, Xiaoming
    Fang, Yuchen
    Luo, Haiyong
    Zhao, Fang
    Wang, Chenxing
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 22208 - 22219