Mangrove Extraction from Compact Polarimetric Synthetic Aperture Radar Images Based on Optimal Feature Combinations

被引:0
作者
Shu, Sijing [1 ,2 ,3 ,4 ,5 ]
Yang, Ji [3 ,4 ]
Jing, Wenlong [3 ,4 ]
Yang, Chuanxun [3 ,4 ]
Wu, Jianping [3 ]
机构
[1] Chinese Acad Sci, Guangzhou Inst Geochem, Guangzhou 510640, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Guangdong Acad Sci, Southern Marine Sci & Engn Guangdong Lab Guangzhou, Guangdong Prov Key Lab Remote Sensing & Geog Infor, Guangdong Open Lab Geospatial Informat Technol & A, Guangzhou 510070, Peoples R China
[4] Southern Marine Sci & Engn Guangdong Lab Guangzhou, Guangzhou 511458, Peoples R China
[5] Minist Nat Resources, Technol Innovat Ctr Ocean Telemetry, Qingdao 266061, Peoples R China
来源
FORESTS | 2024年 / 15卷 / 11期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
mangrove identification; compact polarimetric SAR; polarimetric features; image classification; Gaofen-3; ABOVEGROUND BIOMASS; ALOS PALSAR; LAND-COVER; FORESTS; SAR; CLASSIFICATION; PARAMETERS; ENTROPY; JERS-1; COAST;
D O I
10.3390/f15112047
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
As a polarimetric synthetic aperture radar (SAR) mode capable of simultaneously acquiring abundant surface information and conducting large-width observations, compact polarimetric synthetic aperture radar (CP SAR) holds great promise for mangrove dynamics monitoring. Nevertheless, there have been no studies on mangrove identification using CP SAR. This study aims to explore the potential of C-band CP SAR for mangrove monitoring applications, with the objective of identifying the most effective CP SAR descriptors for mangrove discrimination. A systematic comparison of 52 well-known CP features is provided, utilizing CP SAR data derived from the reconstruction of C-band Gaofen-3 quad-polarimetric data. Among all the features, Shannon entropy (SE), a random polarimetric constituent (VB), Shannon entropy (SEI), and the Bragg backscattering constituent (VG) exhibited the best performance. By combining these four features, we designed three supervised classifiers-support vector machine (SVM), maximum likelihood (ML), and artificial neural network (ANN)-for comparative analysis experiments. The results demonstrated that the optimal polarimetric feature combination not only reduced the redundancy of polarimetric feature data but also enhanced overall accuracy. The highest accuracy of mangrove extraction reached 98.04%. Among the three classifiers, SVM outperformed the other classifiers in mangrove extraction, while ML achieved the highest overall classification accuracy.
引用
收藏
页数:22
相关论文
共 67 条
[31]   Multifrequency and multipolarization radar backscattering from mangrove forests [J].
Mougin, E ;
Proisy, C ;
Marty, G ;
Fromard, F ;
Puig, H ;
Betoulle, JL ;
Rudant, JP .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (01) :94-102
[32]   Connectivity of reef fish between mangroves and coral reefs: Algorithms for the design of marine reserves at seascape scales [J].
Mumby, PJ .
BIOLOGICAL CONSERVATION, 2006, 128 (02) :215-222
[33]   Comparison of Compact Polarimetric Synthetic Aperture Radar Modes [J].
Nord, Michael E. ;
Ainsworth, Thomas L. ;
Lee, Jong-Sen ;
Stacy, Nick J. S. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (01) :174-188
[34]  
Ouchi K, 2002, INT GEOSCI REMOTE SE, P2905, DOI 10.1109/IGARSS.2002.1026817
[35]   Mangrove mapping in North-Western Madagascar using SPOT-XS and SIR-C radar data [J].
Pasqualini, V ;
Iltis, J ;
Dessay, N ;
Lointier, M ;
Guelorget, O ;
Polidori, L .
HYDROBIOLOGIA, 1999, 413 (0) :127-133
[36]   Remote sensing of mangrove forest phenology and its environmental drivers [J].
Pastor-Guzman, J. ;
Dash, Jadunandan ;
Atkinson, Peter M. .
REMOTE SENSING OF ENVIRONMENT, 2018, 205 :71-84
[37]   Interpretation of polarimetric radar signatures of mangrove forests [J].
Proisy, C ;
Mougin, E ;
Fromard, F ;
Karam, MA .
REMOTE SENSING OF ENVIRONMENT, 2000, 71 (01) :56-66
[38]  
Proisy C, 1996, INT GEOSCI REMOTE SE, P733, DOI 10.1109/IGARSS.1996.516458
[39]   Remote Sensing in Mapping Mangrove Ecosystems - An Object-Based Approach [J].
Quoc Tuan Vo ;
Oppelt, Natascha ;
Leinenkugel, Patrick ;
Kuenzer, Claudia .
REMOTE SENSING, 2013, 5 (01) :183-201
[40]   Hybrid-polarity SAR architecture [J].
Raney, R. Keith .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (11) :3397-3404