Directed Assembly of p-Type Tellurium Nanowires for Room-Temperature-Processed Thin-Film Transistors

被引:0
作者
Puthanveettil, Mohammed Hadhi Pazhaya [1 ]
Singh, Manvendra [1 ]
Amarakonda, Siri Chandana [1 ]
Dasgupta, Subho [1 ]
机构
[1] Department of Materials Engineering, Indian Institute of Science (IISc), Bengaluru
来源
IEEE Journal on Flexible Electronics | 2024年 / 3卷 / 10期
基金
新加坡国家研究基金会;
关键词
Dielectrophoresis; electrolyte gating; flexible electronics; inkjet printing; tellurium; thin-film transistor (TFT);
D O I
10.1109/JFLEX.2025.3526083
中图分类号
学科分类号
摘要
The flexible electronics domain has emerged as an alternate technology beyond silicon CMOS because of advancements in low-temperature solution-processable thin-film transistors (TFTs) and circuits. However, uniformity and scalability remain the main hindrances for solution-processed devices, especially when it comes to the deposition of nanomaterials. In this regard, directional assembly using dielectrophoresis is a quick and easy way to uniformly align 1-D nanostructures, for example, nanowires, to bridge a gap between the electrodes to form a transistor channel using nonlinear ac electric fields. In this study, high-hole mobility tellurium nanowires are assembled using nonlinear ac dielectrophoresis to fabricate electrolyte-gated TFTs (EG-TFTs) on a flexible substrate at room temperature. These p-type flexible transistors exhibit an ON–OFF ratio of 3.3 × 102, an ON-current density of 20 µA µm−1, a specific transconductance of 8.5 µS µm−1, and linear mobility of 20.6 cm2 V−1 s−1 with adequate mechanical strain tolerance. © 2022 IEEE All rights reserved.
引用
收藏
页码:454 / 460
页数:6
相关论文
共 50 条
  • [1] Wang P., Et al., The evolution of flexible electronics: From nature, beyond nature, and to nature, Adv. Sci., 7, 20
  • [2] Yao Y., Et al., Flexible and stretchable organic electrochemical transistors for physiological sensing devices, Adv. Mater., 35, 35
  • [3] Cai L., Zhang S., Miao J., Yu Z., Wang C., Fully printed stretchable thin-film transistors and integrated logic circuits, ACS Nano, 10, 12, pp. 11459-11468, (2016)
  • [4] Mao J., Ortiz O., Wang J., Malinge A., Badia A., Kena-Cohen S., Langmuir–Blodgett fabrication of large-area black phosphorus-C60 thin films and heterojunction photodetectors, Nanoscale, 12, 38, pp. 19814-19823
  • [5] Annu A., Bhattacharya B., Singh P.K., Shukla P.K., Rhee H.-W., Carbon nanotube using spray pyrolysis: Recent scenario, J. Alloys Compounds, 691, pp. 970-982, (2017)
  • [6] Kwon Y.A., Et al., Wafer-scale transistor arrays fabricated using slot-die printing of molybdenum disulfide and sodium-embedded alumina, Nature Electron, 6, 6, pp. 443-450
  • [7] Bade S.G.R., Et al., Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes, ACS Nano, 10, 2, pp. 1795-1801, (2016)
  • [8] Deng Y., Et al., Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage, Nature Photon, 16, 7, pp. 505-511
  • [9] Pazos S., Xu X., Guo T., Zhu K., Alshareef H.N., Lanza M., Solution-processed memristors: Performance and reliability, Nature Rev. Mater., 9, 5, pp. 358-373, (2024)
  • [10] Myny K., Et al., Bidirectional communication in an HF hybrid organic/solution-processed metal-oxide RFID tag, IEEE Trans. Electron Devices, 61, 7, pp. 2387-2393, (2014)