ON THE APPROXIMATION OF QUASIPERIODIC FUNCTIONS WITH DIOPHANTINE FREQUENCIES BY PERIODIC FUNCTIONS

被引:2
作者
Jiang, Kai [1 ]
Li, Shifeng [1 ]
Zhang, Pingwen [2 ,3 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc,Minist E, Xiangtan 411105, Hunan, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
quasiperiodic functions; Diophantine frequency; periodic approximation method; rational approximation error; NUMERICAL FOURIER-ANALYSIS; COLLOCATION METHOD; TORUS;
D O I
10.1137/24M165925X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an analysis of the approximation error for addimensional quasiperiodic function f with Diophantine frequencies, approximated by a periodic function with the fundamental domain [0, L1) \times [0, L2) \times \cdot \cdot \cdot \times [0, Ld). When f has a certain regularity, its global behavior can be described by a finite number of Fourier components and has a polynomial decay at infinity. The dominant part of the periodic approximation error is bounded by O(max1\leqj\leqd L-sj j ), where Lj belongs to the best simultaneous approximation sequence and sj is the number of different irrational elements in the jth dimension component of Fourier frequencies, respectively. Meanwhile, we discuss the approximation rate. Finally, these analytical results are verified by some examples.
引用
收藏
页码:951 / 978
页数:28
相关论文
共 24 条
  • [1] Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
  • [2] SHARP PHASE TRANSITIONS FOR THE ALMOST MATHIEU OPERATOR
    Avila, Artur
    You, Jiangong
    Zhou, Qi
    [J]. DUKE MATHEMATICAL JOURNAL, 2017, 166 (14) : 2697 - 2718
  • [3] On the Spectrum and Lyapunov Exponent of Limit Periodic Schrodinger Operators
    Avila, Artur
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (03) : 907 - 918
  • [4] Brigham E Oran, 1988, The fast Fourier transform and its applications
  • [5] Better diophantine approximations of an element of the torus Td
    Chevallier, N
    [J]. ACTA ARITHMETICA, 2001, 97 (03) : 219 - 240
  • [6] The isospectral torus of quasi-periodic Schrodinger operators via periodic approximations
    Damanik, David
    Goldstein, Michael
    Lukic, Milivoje
    [J]. INVENTIONES MATHEMATICAE, 2017, 207 (02) : 895 - 980
  • [7] Davenport H., 1955, Mathematika, V2, P160
  • [8] FE'jOz, 2010, Periodic and Quasi-Periodic Motions in the Many-Body Problem
  • [9] A COLLOCATION METHOD FOR THE NUMERICAL FOURIER ANALYSIS OF QUASI-PERIODIC FUNCTIONS. I: NUMERICAL TESTS AND EXAMPLES
    Gomez, Gerard
    Mondelo, Josep-Maria
    Simo, Carles
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (01): : 41 - 74
  • [10] A COLLOCATION METHOD FOR THE NUMERICAL FOURIER ANALYSIS OF QUASI-PERIODIC FUNCTIONS. II: ANALYTICAL ERROR ESTIMATES
    Gomez, Gerard
    Mondelo, Josep-Maria
    Simo, Carles
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (01): : 75 - 109