Fast-charging high-entropy O3-type layered cathodes for sodium-ion batteries

被引:0
|
作者
Dong, Wendi [1 ]
Wu, Langyuan [1 ,4 ]
Liu, Bowen [3 ]
Ling, Zhenxiao [1 ]
Qi, Xiaodong [1 ]
Fan, Zengjie [1 ]
Hu, Chaogen [1 ]
Wang, Yi [3 ]
Aurbach, Doron [2 ]
Zhang, Xiaogang [1 ,5 ]
机构
[1] Coll Mat Sci & Technol, Nanjing Univ Aeronaut & Astronaut, Jiangsu Key Lab Electrochem Energy Storage Technol, Nanjing 210016, Peoples R China
[2] Bar Ilan Univ, INIES Israel Natl Inst Energy Storage, BINA BIU Ctr Nanotechnol & Adv Mat, Dept Chem, IL-5290002 Ramat Gan, Israel
[3] Nanjing Univ Aeronaut & Astronaut, Ctr Microscopy & Anal, Nanjing 211106, Peoples R China
[4] Ariel Univ, Dept Chem Sci, IL-40700 Ariel, Israel
[5] Nanjing Univ Aeronaut & Astronaut, Key Lab Intelligent Nano Mat & Devices, Minist Educ, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; O3-type cathodes; High-entropy oxides; Fast-charge; Cycle stability; ENERGY; OXIDE; ELECTRODE; STRATEGY;
D O I
10.1016/j.cej.2024.158997
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sodium-ion batteries (SIBs) are considered as the most promising complementary energy storage system for large-scale application due to the high abundance of sodium. However, the irreversible phase transition and slow diffusion kinetics in O3-type layered transition metals oxides cathodes impede the development of advanced SIBs. Here we address this issue by introducing high-entropy doping regulation strategies, a series of NaNi0.4Mn0.3-xFe0.1Ti0.1SnxLi0.05Sb0.05O2 cathodes exhibit an excellent rate performance (>60 mAh g(-1) at 6 A g(-1)) and prolonged cycle performance (capacity retention >80 % after 300 cycles, at 120 mA g(-1)). The correlations between the chemical compositions and the electrochemical properties in the designed high-entropy transition metal oxides cathodes were elucidated using a combination of analytical tools including all kinds of electrochemical techniques including galvanostatic intermittent titration technique (GITT) and density functional theory (DFT) calculations, in conjunction with in-situ X-ray diffraction (XRD). These studies revealed a P3-phase dominated solid-solution reaction during the charge/discharge process that boosts the sodium ions migration in the structure. This study provides a model for effective simultaneous electrochemical evaluation and structure evolution analysis of the multi-elements high-entropy metal oxide cathodes. The understanding gained, enables to apply a successful doping regulation procedure, thus paving the way for a rational design of optimal high-entropy multi-component NaTMO2 cathodes for rechargeable Na ions batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Fast-charge high-voltage layered cathodes for sodium-ion batteries
    Qidi Wang
    Dong Zhou
    Chenglong Zhao
    Jianlin Wang
    Hao Guo
    Liguang Wang
    Zhenpeng Yao
    Deniz Wong
    Götz Schuck
    Xuedong Bai
    Jun Lu
    Marnix Wagemaker
    Nature Sustainability, 2024, 7 : 338 - 347
  • [32] Trace Ti/Mg co-doped O3-type layered oxide cathodes with enhanced kinetics and stability for sodium-ion batteries
    Yu, Jinxun
    Yu, Haifeng
    Zhou, Linlin
    Cheng, Qilin
    Jiang, Hao
    APPLIED SURFACE SCIENCE, 2024, 649
  • [33] Fast-charge high-voltage layered cathodes for sodium-ion batteries
    Wang, Qidi
    Zhou, Dong
    Zhao, Chenglong
    Wang, Jianlin
    Guo, Hao
    Wang, Liguang
    Yao, Zhenpeng
    Wong, Deniz
    Schuck, Goetz
    Bai, Xuedong
    Lu, Jun
    Wagemaker, Marnix
    NATURE SUSTAINABILITY, 2024, 7 (03) : 338 - 347
  • [34] Entropy Tuning Stabilizing P2-Type Layered Cathodes for Sodium-Ion Batteries
    Liu, Jie
    Huang, Weiyuan
    Liu, Renbin
    Lang, Jian
    Li, Yuhao
    Liu, Tongchao
    Amine, Khalil
    Li, Hongsen
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (24)
  • [35] Manipulating local electronic and interfacial structure of O3-type layered oxides for high-rate sodium-ion battery cathodes
    Li, Yong
    Lei, Lanlan
    Hou, Jie
    Wang, Guangming
    Ren, Qinhui
    Shi, Qinhao
    Wang, Juan
    Chen, Liping
    Zu, Guannan
    Li, Shuyue
    Wu, Jianghua
    Xu, Yunhua
    Zhao, Yufeng
    JOURNAL OF ENERGY CHEMISTRY, 2025, 105 : 224 - 232
  • [36] Full Exploitation of Charge Compensation of O3-type Cathode Toward High Energy Sodium-Ion Batteries by High Entropy Strategy
    Yan, Haotian
    Chai, Dandan
    Li, Xiang
    Fu, Yongzhu
    SMALL, 2024, 20 (46)
  • [37] Rationally Designed Sodium Chromium Vanadium Phosphate Cathodes with Multi-Electron Reaction for Fast-Charging Sodium-Ion Batteries
    Zhang, Wei
    Wu, Yulun
    Xu, Zhenming
    Li, Huangxu
    Xu, Ming
    Li, Jianwei
    Dai, Yuhang
    Zong, Wei
    Chen, Ruwei
    He, Liang
    Zhang, Zhian
    Brett, Dan J. L.
    He, Guanjie
    Lai, Yanqing
    Parkin, Ivan P.
    ADVANCED ENERGY MATERIALS, 2022, 12 (25)
  • [38] A Layered P2-and O3-Type Composite as a High-Energy Cathode for Rechargeable Sodium-Ion Batteries
    Guo, Shaohua
    Liu, Pan
    Yu, Haijun
    Zhu, Yanbei
    Chen, Mingwei
    Ishida, Masayoshi
    Zhou, Haoshen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (20) : 5894 - 5899
  • [39] High-Voltage Stabilization of O3-Type Layered Oxide for Sodium-Ion Batteries by Simultaneous Tin Dual Modification
    Song, Tengfei
    Chen, Lin
    Gastol, Dominika
    Dong, Bo
    Marco, Jose F.
    Berry, Frank
    Slater, Peter
    Reed, Daniel
    Kendrick, Emma
    CHEMISTRY OF MATERIALS, 2022, 34 (09) : 4153 - 4165
  • [40] Clarification of underneath capacity loss for O3-type Ni, co free layered cathodes at high voltage for sodium ion batteries
    Zhou, Dong
    Ning, De
    Wang, Jun
    Liu, Jiahua
    Zhang, Gaoyuan
    Xiao, Yinguo
    Zheng, Jiaxin
    Li, Yongli
    Li, Jie
    Liu, Xinzhi
    JOURNAL OF ENERGY CHEMISTRY, 2023, 77 : 479 - 486