Fast-charging high-entropy O3-type layered cathodes for sodium-ion batteries

被引:8
作者
Dong, Wendi [1 ]
Wu, Langyuan [1 ,4 ]
Liu, Bowen [3 ]
Ling, Zhenxiao [1 ]
Qi, Xiaodong [1 ]
Fan, Zengjie [1 ]
Hu, Chaogen [1 ]
Wang, Yi [3 ]
Aurbach, Doron [2 ]
Zhang, Xiaogang [1 ,5 ]
机构
[1] Coll Mat Sci & Technol, Nanjing Univ Aeronaut & Astronaut, Jiangsu Key Lab Electrochem Energy Storage Technol, Nanjing 210016, Peoples R China
[2] Bar Ilan Univ, INIES Israel Natl Inst Energy Storage, BINA BIU Ctr Nanotechnol & Adv Mat, Dept Chem, IL-5290002 Ramat Gan, Israel
[3] Nanjing Univ Aeronaut & Astronaut, Ctr Microscopy & Anal, Nanjing 211106, Peoples R China
[4] Ariel Univ, Dept Chem Sci, IL-40700 Ariel, Israel
[5] Nanjing Univ Aeronaut & Astronaut, Key Lab Intelligent Nano Mat & Devices, Minist Educ, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; O3-type cathodes; High-entropy oxides; Fast-charge; Cycle stability; ENERGY; OXIDE; ELECTRODE; STRATEGY;
D O I
10.1016/j.cej.2024.158997
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sodium-ion batteries (SIBs) are considered as the most promising complementary energy storage system for large-scale application due to the high abundance of sodium. However, the irreversible phase transition and slow diffusion kinetics in O3-type layered transition metals oxides cathodes impede the development of advanced SIBs. Here we address this issue by introducing high-entropy doping regulation strategies, a series of NaNi0.4Mn0.3-xFe0.1Ti0.1SnxLi0.05Sb0.05O2 cathodes exhibit an excellent rate performance (>60 mAh g(-1) at 6 A g(-1)) and prolonged cycle performance (capacity retention >80 % after 300 cycles, at 120 mA g(-1)). The correlations between the chemical compositions and the electrochemical properties in the designed high-entropy transition metal oxides cathodes were elucidated using a combination of analytical tools including all kinds of electrochemical techniques including galvanostatic intermittent titration technique (GITT) and density functional theory (DFT) calculations, in conjunction with in-situ X-ray diffraction (XRD). These studies revealed a P3-phase dominated solid-solution reaction during the charge/discharge process that boosts the sodium ions migration in the structure. This study provides a model for effective simultaneous electrochemical evaluation and structure evolution analysis of the multi-elements high-entropy metal oxide cathodes. The understanding gained, enables to apply a successful doping regulation procedure, thus paving the way for a rational design of optimal high-entropy multi-component NaTMO2 cathodes for rechargeable Na ions batteries.
引用
收藏
页数:11
相关论文
共 72 条
[1]   Recent progress of high-entropy materials for energy storage and conversion [J].
Amiri, Azadeh ;
Shahbazian-Yassar, Reza .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (02) :782-823
[2]   Theoretical Insights into High-Entropy Ni-Rich Layered Oxide Cathodes for Low-Strain Li-Ion Batteries [J].
Bano, Amreen ;
Noked, Malachi ;
Major, Dan Thomas .
CHEMISTRY OF MATERIALS, 2023, 35 (20) :8426-8439
[3]  
Caroline G., 2024, Next Sustainability, V4
[4]   ELECTROCHEMICAL INTERCALATION OF SODIUM IN NAXCOO2 BRONZES [J].
DELMAS, C ;
BRACONNIER, JJ ;
FOUASSIER, C ;
HAGENMULLER, P .
SOLID STATE IONICS, 1981, 3-4 (AUG) :165-169
[5]   High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode [J].
Deng, Jianqiu ;
Luo, Wen-Bin ;
Lu, Xiao ;
Yao, Qingrong ;
Wang, Zhongmin ;
Liu, Hua-Kun ;
Zhou, Huaiying ;
Dou, Shi-Xue .
ADVANCED ENERGY MATERIALS, 2018, 8 (05)
[6]   Electrochemical Na-Deintercalation from NaVO2 [J].
Didier, C. ;
Guignard, M. ;
Denage, C. ;
Szajwaj, O. ;
Ito, S. ;
Saadoune, I. ;
Darriet, J. ;
Delmas, C. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (05) :A75-A78
[7]   Tailoring planar strain for robust structural stability in high-entropy layered sodium oxide cathode materials [J].
Ding, Feixiang ;
Ji, Pengxiang ;
Han, Zhen ;
Hou, Xueyan ;
Yang, Yang ;
Hu, Zilin ;
Niu, Yaoshen ;
Liu, Yuan ;
Zhang, Jiao ;
Rong, Xiaohui ;
Lu, Yaxiang ;
Mao, Huican ;
Su, Dong ;
Chen, Liquan ;
Hu, Yong-Sheng .
NATURE ENERGY, 2024, 9 (12) :1529-1539
[8]   Tailoring Electronic Structure to Achieve Maximum Utilization of Transition Metal Redox for High-Entropy Na Layered Oxide Cathodes [J].
Ding, Feixiang ;
Wang, Haibo ;
Zhang, Qinghua ;
Zheng, Lirong ;
Guo, Hao ;
Yu, Pengfei ;
Zhang, Nian ;
Guo, Qiubo ;
Xie, Fei ;
Dang, Rongbin ;
Rong, Xiaohui ;
Lu, Yaxiang ;
Xiao, Ruijuan ;
Chen, Liquan ;
Hu, Yong-Sheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (25) :13592-13602
[9]   Using High-Entropy Configuration Strategy to Design Na-Ion Layered Oxide Cathodes with Superior Electrochemical Performance and Thermal Stability [J].
Ding, Feixiang ;
Zhao, Chenglong ;
Xiao, Dongdong ;
Rong, Xiaohui ;
Wang, Haibo ;
Li, Yuqi ;
Yang, Yang ;
Lu, Yaxiang ;
Hu, Yong-Sheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (18) :8286-8295
[10]   Additive-Free Self-Presodiation Strategy for High-Performance Na-Ion Batteries [J].
Ding, Feixiang ;
Meng, Qingshi ;
Yu, Pengfei ;
Wang, Haibo ;
Niu, Yaoshen ;
Li, Yuqi ;
Yang, Yang ;
Rong, Xiaohui ;
Liu, Xiaosong ;
Lu, Yaxiang ;
Chen, Liquan ;
Hu, Yong-Sheng .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (26)