Surface Reaction Induced Compressive Strain for Stable Inorganic Perovskite Solar Cells

被引:5
|
作者
Jiang, Ying [1 ,2 ]
Sun, Xiangnan [1 ,2 ]
Liu, Tianjun [3 ]
Zhang, Wei [1 ,2 ]
Xu, Peng [1 ,2 ]
Li, Bowen [1 ,2 ]
Zhao, Xiaoming [1 ,2 ]
Guo, Wanlin [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Minist Educ, State Key Lab Mech & Control Aerosp Struct, Key Lab Intelligent Nano Mat & Devices, Nanjing 210016, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Inst Frontier Sci, Nanjing 210016, Peoples R China
[3] Univ Cambridge, Dept Phys, Cavendish Lab, Cambridge CB3 0HE, England
基金
中国博士后科学基金;
关键词
compressive strain; inorganic perovskites; perovskite solar cells; stability; surface reaction; EFFICIENT; STABILIZATION; ENABLES; IMPACT;
D O I
10.1002/anie.202410721
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cesium-based inorganic perovskites have emerged as promising light-harvesting materials for perovskite solar cells (PSCs) due to their promising thermal- and photo-stability. However, obstacles to commercialization remain regarding their phase instability. In this work, we report a facile and effective strategy to regulate the surface compressive strain via in situ surface reaction to stabilize CsPbI3 perovskite. The use of a chelating ligand with a molecular configuration closely matching the integer multiples of the unit cell lattice parameters of CsPbI3 induces compressive strain at the surface of CsPbI3. The chemical bonding and strain modulation synergistically not only passivate film defects, but also inhibit perovskite phase degradation, thus significantly improving the intrinsic stability of inorganic perovskite. Consequently, enhanced power conversion efficiency (PCE) of 21.0 % and 18.6 % were respectively achieved in 0.16-cm2 lab-scale devices and 25.3-cm2 solar modules. Further, surface reaction enables PSCs with enhanced thermal and operational stability; these devices retain over 95 % of their initial PCE after damp-heat tests (i.e., in 85 degrees C and 85 % R. H. air) for 2000 h, and remain 99 % of their initial PCE after operating for 2000 h, representing one of the most stable inorganic PSCs reported so far.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Surface reaction for efficient and stable inverted perovskite solar cells
    Jiang, Qi
    Tong, Jinhui
    Xian, Yeming
    Kerner, Ross A.
    Dunfield, Sean P.
    Xiao, Chuanxiao
    Scheidt, Rebecca A.
    Kuciauskas, Darius
    Wang, Xiaoming
    Hautzinger, Matthew P.
    Tirawat, Robert
    Beard, Matthew C.
    Fenning, David P.
    Berry, Joseph J.
    Larson, Bryon W.
    Yan, Yanfa
    Zhu, Kai
    NATURE, 2022, 611 (7935) : 278 - +
  • [2] Thermally Stable Inorganic Perovskite Solar Cells
    Gaonkar, Harsh
    Zhu, Junhao
    Kottokkaran, Ranjith
    Noack, Max
    Dalal, Vikram
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 167 - 169
  • [3] Surface modification of CsPbI2Br for improved performance of inorganic perovskite solar cells
    Fatima, Kalsoom
    Haider, Muhammad Irfan
    Bashir, Amna
    Qamar, Samina
    Qureshi, Akbar Ali
    Akhter, Zareen
    Sultan, Muhammad
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2022, 142
  • [4] Making fully printed perovskite solar cells stable outdoor with inorganic superhydrophobic coating
    Luo, Jianqiang
    Yang, Hong Bin
    Zhuang, Mingxiang
    Liu, Shujuan
    Wang, Liang
    Liu, Bin
    JOURNAL OF ENERGY CHEMISTRY, 2020, 50 : 332 - 338
  • [5] Inorganic-Derived 0D Perovskite Induced Surface Lattice Arrangement for Efficient and Stable All-Inorganic Perovskite Solar Cells
    Heo, Jin Hyuck
    Park, Jin Kyoung
    Lee, Hyong Joon
    Shin, Eun Ha
    Hong, Seok Yeong
    Hong, Ki-Ha
    Zhang, Fei
    Im, Sang Hyuk
    ADVANCED MATERIALS, 2024, 36 (45)
  • [6] Surface Modification of NiO Nanoparticles for Highly Stable Perovskite Solar Cells Based on All-Inorganic Charge Transfer Layers
    Qiu, Qinyuan
    Mou, Junpeng
    Song, Jian
    Qiang, Yinghuai
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (11) : 6300 - 6307
  • [7] Synergetic surface defect passivation towards efficient and stable inorganic perovskite solar cells
    Liu, Yali
    Xiang, Wanchun
    Mou, Shaiqiang
    Zhang, Hao
    Liu, Shengzhong
    CHEMICAL ENGINEERING JOURNAL, 2022, 447
  • [8] Highly Stable Perovskite Solar Cells by Reducing Residual Water-Induced Decomposition of Perovskite
    Yang, Xudong
    Ji, Wenxi
    Chen, Qiaoyun
    Su, Rui
    Zhang, Longgui
    Wang, Ailian
    Zhang, Taoyi
    Zhou, Yi
    Song, Bo
    CHINESE JOURNAL OF CHEMISTRY, 2023, 41 (13): : 1594 - 1602
  • [9] Regulating the lattice strain in perovskite films to obtain efficient and stable perovskite solar cells
    Wang, Qinqin
    Jiang, Xiaoqing
    Peng, Cheng
    Zhang, Jiakang
    Jiang, Haokun
    Bu, Hongkai
    Yang, Guangyue
    Wang, Hao
    Zhou, Zhongmin
    Guo, Xin
    CHEMICAL ENGINEERING JOURNAL, 2024, 481
  • [10] Dual-Surface Polydentate Anchoring Enabled Strain Regulation for Stable and Efficient Perovskite Solar Cells
    Zeng, Fancong
    Xu, Lin
    Hu, Chencheng
    Xing, Jiahe
    Wu, Yanjie
    Bai, Xue
    Dong, Biao
    Song, Hongwei
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (08)