More than the barrier effect: Biodegradable Mg-Ag alloy membranes for guided bone/tissue regeneration

被引:8
作者
Ouyang, Sihui [1 ,2 ,3 ]
Wu, Xiong [1 ]
Meng, Li [4 ,5 ]
Jing, Xuerui [1 ]
Qiao, Liying [1 ,2 ,3 ]
She, Jia [1 ,2 ,3 ]
Zheng, Kai [4 ,5 ]
Chen, Xianhua [1 ,2 ,3 ]
Pan, Fusheng [1 ,2 ,3 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Natl Engn Res Ctr Magnesium Alloys, Chongqing 400044, Peoples R China
[3] Chongqing Univ, Natl Key Lab Adv Casting Technol, Chongqing 400044, Peoples R China
[4] Nanjing Med Univ, Jiangsu Prov Key Lab Oral Dis, Nanjing 210029, Peoples R China
[5] Nanjing Med Univ, Jiangsu Prov Engn Res Ctr Stomatol Translat Med, Nanjing 210029, Peoples R China
基金
中国博士后科学基金;
关键词
Biodegradable; Magnesium alloy; Antibacterial; Guided tissue regeneration; Guided bone regeneration; IN-VITRO; BONE REGENERATION; ANTIBACTERIAL PROPERTIES; CORROSION-RESISTANCE; SILVER NANOPARTICLES; OSTEOGENIC ACTIVITY; ESCHERICHIA-COLI; SEGREGATION; IONS;
D O I
10.1016/j.jma.2024.03.022
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Magnesium (Mg) and its alloys have emerged as promising candidates for guided bone/tissue regeneration (GBR/GTR) due to their good mechanical properties, biosafety, and biodegradability. In this study, we present a pioneering application of Mg-Ag alloys featuring tunable corrosion behaviors for GBR/GTR membranes, showcasing their in vitro antibacterial effects, cell migration, and osteogenic differentiation abilities. Mg-Ag alloys with different Ag contents were engineered to facilitate the cell migration of murine fibroblasts (L929) and the osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs). The Mg-Ag alloy consisted of recrystallized alpha-Mg grains and fine Mg4Ag second phases, with an observable refinement in the average grain size to 5.6 mu m with increasing Ag content. Among the alloys, Mg-9Ag exhibited optimal mechanical strength and moderate plasticity (tensile yield strength of 205.7 MPa, elongation of 20.3%, and a maximum bending load of 437.2 N). Furthermore, the alloying of Ag accelerated the cathodic reaction of pure Mg, leading to a slightly increased corrosion rate of the Mg-Ag alloys while maintaining acceptable general corrosion. Notably, compared with pure Mg, Mg-Ag alloys had superior antibacterial effects against Porphyromonas gingivalis (P. gingivalis) and Staphylococcus aureus (S. aureus). Taken together, these results provide evidence for the significant clinical potential of Mg-Ag alloys as GBR/GTR membranes. (c) 2024 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer review under responsibility of Chongqing University
引用
收藏
页码:4454 / 4467
页数:14
相关论文
共 50 条
[41]   In vitro and in vivo evaluations of Mg-Zn-Gd alloy membrane on guided bone regeneration for rabbit calvarial defect [J].
Si, Jiawen ;
Shen, Hongzhou ;
Miao, Hongwei ;
Tian, Yuan ;
Huang, Hua ;
Shi, Jun ;
Yuan, Guangyin ;
Shen, Guofang .
JOURNAL OF MAGNESIUM AND ALLOYS, 2021, 9 (01) :281-291
[42]   Multifunctional hydrogel/platelet-rich fibrin/nanofibers scaffolds with cell barrier and osteogenesis for guided tissue regeneration/guided bone regeneration applications [J].
Zhang, Lin ;
Dong, Yunsheng ;
Liu, Yufei ;
Liu, Xiangsheng ;
Wang, Zhitao ;
Wan, Jinpeng ;
Yu, Xinyi ;
Wang, Shufang .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253
[43]   Prognostic factors for alveolar regeneration:: effect of tissue occlusion on alveolar bone regeneration with guided tissue regeneration [J].
Polimeni, G ;
Koo, KT ;
Qahash, M ;
Xiropaidis, AV ;
Albandar, JM ;
Wikesjö, UME .
JOURNAL OF CLINICAL PERIODONTOLOGY, 2004, 31 (09) :730-735
[44]   Evaluation of the regenerative effect of a 25% doxycycline-loaded biodegradable membrane for guided tissue regeneration [J].
Chang, CY ;
Yamada, S .
JOURNAL OF PERIODONTOLOGY, 2000, 71 (07) :1086-1093
[45]   The Synergistic Effect of Trace Ag and Hot Extruding on the Microstructure and Properties of a Biodegradable Mg-Zn-Sr-Ag Alloy [J].
Shi, Qifeng ;
Wu, Huishu ;
Gao, Zhixian ;
Wang, Dongsheng ;
Wang, Jingwen ;
Yang, Youwen ;
Li, Runxia .
MATERIALS, 2023, 16 (19)
[46]   Preparation of biodegradable PLA/PLGA membranes with PGA mesh and their application for periodontal guided tissue regeneration [J].
Kim, Eun Jin ;
Yoon, Suk Joon ;
Yeo, Guw-Dong ;
Pai, Chaul-Min ;
Kang, Inn-Kyu .
BIOMEDICAL MATERIALS, 2009, 4 (05)
[47]   Guided Bone Regeneration with Ammoniomethacrylate-Based Barrier Membranes in a Radial Defect Model [J].
Kirmayer, David ;
Grin, Ada ;
Gefter , Julia ;
Friedman, Michael ;
Rachmilewitz, Jacob ;
Mosheiff, Rami ;
Kenett, Ron ;
Khoury, Amal .
BIOMED RESEARCH INTERNATIONAL, 2020, 2020
[48]   Mussel-inspired antimicrobial coating on PTFE barrier membranes for guided tissue regeneration [J].
Nardo, Tiziana ;
Chiono, Valeria ;
Carmagnola, Irene ;
Fracchia, Letizia ;
Ceresa, Chiara ;
Tabrizian, Maryam ;
Ciardelli, Gianluca .
BIOMEDICAL MATERIALS, 2021, 16 (03)
[49]   Construction of a magnesium hydroxide/graphene oxide/hydroxyapatite composite coating on Mg-Ca-Zn-Ag alloy to inhibit bacterial infection and promote bone regeneration [J].
Yuan, Bo ;
Chen, Hewei ;
Zhao, Rui ;
Deng, Xuangeng ;
Chen, Guo ;
Yang, Xiao ;
Xiao, Zhanwen ;
Aurora, Antoniac ;
Iulia, Bita Ana ;
Zhang, Kai ;
Zhu, Xiangdong ;
Iulian, Antoniac Vasile ;
Hai, Shen ;
Zhang, Xingdong .
BIOACTIVE MATERIALS, 2022, 18 :354-367
[50]   Hard and soft tissue changes after guided bone regeneration using two different barrier membranes: an experimental in vivo investigation [J].
Di Raimondo, Riccardo ;
Sanz-Esporrin, Javier ;
Sanz-Martin, Ignacio ;
Pla, Rafael ;
Luengo, Fernando ;
Vignoletti, Fabio ;
Nunez, Javier ;
Sanz, Mariano .
CLINICAL ORAL INVESTIGATIONS, 2021, 25 (04) :2213-2227