Self-Guided Pixel-Wise Calibration for Low-Light Image Enhancement

被引:0
作者
Shen, Zhihua [1 ]
Wang, Caiju [2 ]
Li, Fei [1 ]
Liang, Jinshuo [3 ]
Li, Xiaomao [1 ]
Qu, Dong [3 ]
机构
[1] Research Institute of USV Engineering, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai
[2] School of Computer Engineering and Science, Shanghai University, Shanghai
[3] School of Future Technology, Shanghai University, Shanghai
来源
Applied Sciences (Switzerland) | 2024年 / 14卷 / 23期
基金
中国国家自然科学基金;
关键词
color correction; denoising; low-light image enhancement; unsupervised learning;
D O I
10.3390/app142311033
中图分类号
学科分类号
摘要
Unsupervised low-light image enhancement methods have gained attention and shown improvement with low data dependence. However, the lack of a ground truth presents challenges, notably in pronounced noise and color bias. This paper proposes a Self-Guided Pixel-wise Calibration method to overcome associated issues by leveraging inherent features from the input as a self-guide. Specifically, a Pixel-wise Guided Filter is introduced to decrease noise, utilizing a low-light image for guidance and deep features as regularization maps. Additionally, a Color Correction Module is introduced to enhance saturation by adjusting the shadow threshold. Finally, a pixel-wise exposure control loss is formalized to optimize overall naturalness by adjusting brightness to a well-exposedness map from the low-light image. Extensive experiments demonstrate that our method outperforms many state-of-the-art methods, producing enhanced results with fewer distortions across various real-world image enhancement tasks. © 2024 by the authors.
引用
收藏
相关论文
共 50 条
  • [41] Self-Supervised Adaptive Illumination Estimation for Low-Light Image Enhancement
    Yu, Ting
    Wang, Shuai
    Chen, Wei
    Yu, F. Richard
    Leung, Victor C. M.
    Tian, Zijian
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (02): : 1882 - 1893
  • [42] Luminance prior guided Low-Light 4C catenary image enhancement
    Xue, Zhenhua
    Luo, Jun
    Wei, Zhenlin
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2025, 253
  • [43] Illumination-aware and structure-guided transformer for low-light image enhancement
    Fan, Guodong
    Yao, Zishu
    Gan, Min
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2025, 252
  • [44] Continuous detail enhancement framework for low-light image enhancement☆
    Liu, Kang
    Xv, Zhihao
    Yang, Zhe
    Liu, Lian
    Li, Xinyu
    Hu, Xiaopeng
    DISPLAYS, 2025, 88
  • [45] Low-light image enhancement based on variational image decomposition
    Su, Yonggang
    Yang, Xuejie
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [46] Low-light image enhancement based on normal-light image degradation
    Zhao, Bai
    Gong, Xiaolin
    Wang, Jian
    Zhao, Lingchao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (05) : 1409 - 1416
  • [47] Low-light image enhancement using inverted image normalized by atmospheric light
    Jeon, Jong Ju
    Eom, I. I. Kyu
    SIGNAL PROCESSING, 2022, 196
  • [48] A Pipeline Neural Network for Low-Light Image Enhancement
    Guo, Yanhui
    Ke, Xue
    Ma, Jie
    Zhang, Jun
    IEEE ACCESS, 2019, 7 : 13737 - 13744
  • [49] Low-Light Image Enhancement by Principle Component Analysis
    Priyanka, Steffi Agino
    Wang, Yuan-Kai
    Huang, Shih-Yu
    IEEE ACCESS, 2019, 7 : 3082 - 3092
  • [50] Low-light color image enhancement based on NSST
    Xiaochu W.
    Guijin T.
    Xiaohua L.
    Ziguan C.
    Suhuai L.
    Journal of China Universities of Posts and Telecommunications, 2019, 26 (05): : 41 - 48