The Dayside Ionosphere of Mars as Controlled by the Interplay Between Solar Wind Dynamic Pressure and Crustal Magnetic Field Strength

被引:0
作者
Qin, Junfeng [1 ]
Curry, Shannon [2 ,3 ]
Mitchell, Dave [1 ]
Xu, Shaosui [1 ]
Lillis, Robert [1 ]
Andersson, Laila [2 ]
机构
[1] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[2] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA
[3] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO USA
基金
美国国家航空航天局;
关键词
Martian upper ionosphere; crustal magnetic field; solar wind dynamic pressure; electron density; magnetic topology; MARTIAN IONOSPHERE;
D O I
10.1029/2024GL110838
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We investigate how the Martian dayside ionospheric structure is modified by crustal magnetic field (CMF) strength and upstream solar wind pressure by analyzing electron density data from the Langmuir Probe and Waves instrument onboard the MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft. We find that the electron density above the exobase is anticorrelated with the ratio of solar wind's normal dynamic pressure (PSW perpendicular to ${P}_{\text{SW}\perp }$) to CMF magnetic pressure (PCMF ${P}_{\text{CMF}}$). We also analyze the electron density behavior across different magnetic topologies as a function of PSW perpendicular to/PCMF ${P}_{\text{SW}\perp }/{P}_{\text{CMF}}$. The extremely low electron density in the draped topology relates to ionopause-like structures. The lower electron density in the closed and open topology under higher PSW perpendicular to/PCMF ${P}_{\text{SW}\perp }/{P}_{\text{CMF}}$ may be attributed to a downward force, potentially the J x B force in the case of closed topology. This study highlights the complex interplay between solar wind and CMF in influencing the Martian dayside upper ionosphere.
引用
收藏
页数:12
相关论文
共 52 条
[1]   Dayside induced magnetic field in the ionosphere of Mars [J].
Akalin, F. ;
Morgan, D. D. ;
Gurnett, D. A. ;
Kirchner, D. L. ;
Brain, D. A. ;
Modolo, R. ;
Acuna, M. H. ;
Espley, J. R. .
ICARUS, 2010, 206 (01) :104-111
[2]   The Langmuir Probe and Waves (LPW) Instrument for MAVEN [J].
Andersson, L. ;
Ergun, R. E. ;
Delory, G. T. ;
Eriksson, A. ;
Westfall, J. ;
Reed, H. ;
McCauly, J. ;
Summers, D. ;
Meyers, D. .
SPACE SCIENCE REVIEWS, 2015, 195 (1-4) :173-198
[3]  
Andersson L., 2024, NASA Planetary Data System, DOI [10.17189/1517707, DOI 10.17189/1517707]
[4]  
Andersson L., 2024, NASA Planetary Data System, DOI [10.17189/1517706, DOI 10.17189/8DBB-Y9852024PDS..DATA..139A]
[5]   Control of the topside Martian ionosphere by crustal magnetic fields [J].
Andrews, D. J. ;
Edberg, N. J. T. ;
Eriksson, A. I. ;
Gurnett, D. A. ;
Morgan, D. ;
Nemec, F. ;
Opgenoorth, H. J. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (04) :3042-3058
[6]   Electron Densities and Temperatures in the Martian Ionosphere: MAVEN LPW Observations of Control by Crustal Fields [J].
Andrews, David J. J. ;
Stergiopoulou, Katerina ;
Andersson, Laila ;
Eriksson, Anders I. E. ;
Ergun, Robert E. E. ;
Pilinski, Marcin .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2023, 128 (02)
[7]   Electron pitch angle distributions as indicators of magnetic field topology near Mars [J].
Brain, D. A. ;
Lillis, R. J. ;
Mitchell, D. L. ;
Halekas, J. S. ;
Lin, R. P. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2007, 112 (A9)
[8]   The magnetic field draping direction at Mars from April 1999 through August 2004 [J].
Brain, David A. ;
Mitchell, David L. ;
Halekas, Jasper S. .
ICARUS, 2006, 182 (02) :464-473
[9]  
Connerney Jack, 2017, PDS, DOI 10.17189/1414247
[10]   Estimates of Ionospheric Transport and Ion Loss at Mars [J].
Cravens, T. E. ;
Hamil, O. ;
Houston, S. ;
Bougher, S. ;
Ma, Y. ;
Brain, D. ;
Ledvina, S. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (10) :10626-10637