Unified enantiospecific synthesis of drimane meroterpenoids enabled by enzyme catalysis and transition metal catalysis

被引:3
作者
You, Yipeng [1 ]
Zhang, Xue-Jie [2 ]
Xiao, Wen [2 ]
Kunthic, Thittaya [2 ]
Xiang, Zheng [2 ,3 ]
Xu, Chen [1 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Grubbs Inst, Dept Chem, Guangdong Prov Key Lab Catalysis, 1088 Xueyuan Ave, Shenzhen, Peoples R China
[2] Peking Univ, Univ Town Shenzhen, Sch Chem Biol & Biotechnol, AI Sci Preferred Program AI4S,Shenzhen Grad Sch,St, Shenzhen 518055, Peoples R China
[3] Inst Chem Biol, Gaoke Innovat Ctr, Shenzhen Bay Lab, Guangqiao Rd, Shenzhen 518132, Peoples R China
基金
中国国家自然科学基金;
关键词
ENANTIOSELECTIVE TOTAL-SYNTHESIS; MEVALONATE PATHWAY; DRIMENOL SYNTHASE; ENT-CHROMAZONAROL; IDENTIFICATION; OXIDATION; BIOLOGY; HALIDES;
D O I
10.1039/d4sc06060a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Merging the advantages of biocatalysis and chemocatalysis in retrosynthetic analysis can significantly improve the efficiency and selectivity of natural product synthesis. Here, we describe a unified approach for the synthesis of drimane meroterpenoids by combining heterologous biosynthesis, enzymatic hydroxylation, and transition metal catalysis. In phase one, drimenol was produced by engineering a biosynthetic pathway in Escherichia coli. Cytochrome P450BM3 from Bacillus megaterium was engineered to catalyze the C-3 hydroxylation of drimenol. By means of nickel-catalyzed reductive coupling, six drimane meroterpenoids (+)-hongoquercins A and B, (+)-ent-chromazonarol, 8-epi-puupehenol, (-)-pelorol, and (-)-mycoleptodiscin A were synthesized in a concise and enantiospecific manner. This strategy offers facile access to the congeners of the drimane meroterpenoid family and lays the foundation for activity optimization.
引用
收藏
页码:19307 / 19314
页数:8
相关论文
共 71 条
[1]  
Ackerman LKG, 2015, CHEM SCI, V6, P1115, DOI [10.1039/C4SC03106G, 10.1039/c4sc03106g]
[2]   Chemistry of fungal meroterpenoid cyclases [J].
Barra, Lena ;
Abe, Ikuro .
NATURAL PRODUCT REPORTS, 2021, 38 (03) :566-585
[3]   Synthesis and antitumoral activities of marine ent-chromazonarol and related compounds [J].
Barrero, AF ;
Alvarez-Manzaneda, EJ ;
Herrador, MM ;
Chahboun, R ;
Galera, P .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 1999, 9 (16) :2325-2328
[4]   Cascade Polyketide and Polyene Cyclizations: Biomimetic Total Synthesis of Hongoquercin B [J].
Barrett, Tim N. ;
Barrett, Anthony G. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (49) :17013-17015
[5]   Engineering the third wave of biocatalysis [J].
Bornscheuer, U. T. ;
Huisman, G. W. ;
Kazlauskas, R. J. ;
Lutz, S. ;
Moore, J. C. ;
Robins, K. .
NATURE, 2012, 485 (7397) :185-194
[6]   Navigating the Chiral Pool in the Total Synthesis of Complex Terpene Natural Products [J].
Brill, Zachary G. ;
Condakes, Matthew L. ;
Ting, Chi P. ;
Maimone, Thomas J. .
CHEMICAL REVIEWS, 2017, 117 (18) :11753-11795
[7]   A Widely Applicable Dual Catalytic System for Cross-Electrophile Coupling Enabled by Mechanistic Studies [J].
Charboneau, David J. ;
Barth, Emily L. ;
Hazari, Nilay ;
Uehling, Mycah R. ;
Zultanski, Susan L. .
ACS CATALYSIS, 2020, 10 (21) :12642-12656
[8]   Chemoenzymatic Synthesis of Cylindrocyclophanes A and F and Merocyclophanes A and D [J].
Chen, Kai-Yue ;
Wang, Hua-Qi ;
Yuan, Ye ;
Mou, Shu-Bin ;
Xiang, Zheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (46)
[9]   Tailoring the Tag/Catcher System by Integrating Covalent Bonds and Noncovalent Interactions for Highly Efficient Protein Self-Assembly [J].
Chen, Yao ;
Ming, Dengming ;
Zhu, Liying ;
Huang, He ;
Jiang, Ling .
BIOMACROMOLECULES, 2022, 23 (09) :3936-3947
[10]   ENT-CHROMAZONAROL, A CHROMAN-SESQUITERPENOID FROM SPONGE DISIDEA-PALLESCENS [J].
CIMINO, G ;
DESTEFANO, S ;
MINALE, L .
EXPERIENTIA, 1975, 31 (10) :1117-1118