Enhancing Accuracy in Gas-Water Two-Phase Flow Sensor Systems Through Deep-Learning-Based Computational Framework

被引:0
作者
Bao, Minghan [1 ]
Wu, Rining [2 ]
Wang, Mi [1 ]
Li, Kang [3 ]
Jia, Xiaodong [1 ]
机构
[1] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Comp Sci, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
关键词
Deep learning; fluid flow measurement; neural networks; sensor systems; tomography; ELECTRICAL-RESISTANCE TOMOGRAPHY; CROSS-VALIDATION; NETWORKS; RATES; OIL;
D O I
10.1109/JSEN.2024.3475292
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multiphase flow is a critical component in contemporary industrial operations, yet the accurate quantification of multiphase parameters presents a substantial obstacle. This research enhances gas-water two-phase flow measurement accuracy via a deep learning framework, leveraging a multisensor array in a laboratory-simulated dual-layer pipeline. Employing electrical resistance tomography (ERT), electromagnetic flow meters (EMFs), and temperature and pressure sensors, it captures real-time data for a deep learning model integrating a classical drift flux model (DFM) for a nonintrusive, comprehensive measurement system. Two models, 1-D convolutional bidirectional long short-term memory neural network (1D CNN-BiLSTM) and multiphase flow estimation neural network (MFENet)-featuring positional encoding, multiattention mechanisms, and a sliding window-were developed. Testing across 185 different flow conditions demonstrated superior precision of MFENet in flow predictions with the average relative errors of 2.45% for gas volumetric flow rate and 1.38% for water volumetric flow rate, outperforming 1D CNN-BiLSTM. This emphasizes the capability of deep learning to improve the accuracy of multiphase flow measurement techniques.
引用
收藏
页码:39934 / 39946
页数:13
相关论文
共 58 条
  • [41] Karras T., Laine S., Aila T., A style-based generator architecture for generative adversarial networks, (2018)
  • [42] Yi S., Ju J., Yoon M.-K., Choi J., Grouped convolutional neural networks for multivariate time series, (2017)
  • [43] Saoud A., Mosorov V., Grudzien K., Measurement of velocity of gas/solid swirl flow using electrical capacitance tomography and cross correlation technique, Flow Meas. Instrum, 53, pp. 133-140, (2017)
  • [44] Lei Ba J., Ryan Kiros J., Hinton G.E., Layer normalization, (2016)
  • [45] Schmidt-Hieber J., Nonparametric regression using deep neural networks with ReLU activation function, Ann. Statist, 48, 4, pp. 1875-1897, (2020)
  • [46] Eckle K., Schmidt-Hieber J., A comparison of deep networks with ReLU activation function and linear spline-type methods, Neural Netw, 110, pp. 232-242, (2019)
  • [47] Gopal K.P.S., Kumar Sahu K., Normalization: A preprocessing stage, (2015)
  • [48] Chou J.-S., Nguyen T.-K., Forward forecast of stock price using sliding-window metaheuristic-optimized machine-learning regression, IEEE Trans. Ind. Informat, 14, 7, pp. 3132-3142, (2018)
  • [49] Wiens T.S., Dale B.C., Boyce M.S., Kershaw G.P., Three way k-fold cross-validation of resource selection functions, Ecol. Model, 212, 3-4, pp. 244-255, (2008)
  • [50] Anguita D., Ghelardoni L., Ghio A., Oneto L., Ridella S., The 'K' in K-fold cross validation, Proc. Eur. Symp. Artif. Neural Netw. (ESANN), pp. 441-446, (2012)