Low-carbon economic dispatch of integrated energy system with carbon capture power plant and multiple utilization of hydrogen energy

被引:0
|
作者
Wang, Jiarui [1 ]
Ji, Xiu [2 ]
Meng, Xiangdong [1 ]
Bai, Yang [2 ]
Li, Meiyue [2 ]
机构
[1] State Grid Jilin Electric Power Co., Ltd., Changchun, China
[2] National Local Joint Engineering Research Center for Smart Distribution Grid Measurement and Control with Safety Operation Technology, Changchun Institute of Technology, Changchun, China
关键词
Demand response - Hydrogen storage;
D O I
10.3389/fenrg.2024.1447858
中图分类号
学科分类号
摘要
In the context of dual carbon, in order to promote the consumption of renewable energy and improve energy utilization efficiency, a low-carbon economic dispatch model of an integrated energy system containing carbon capture power plants and multiple utilization of hydrogen energy is proposed. First, introduce liquid storage tanks to transform traditional carbon capture power plants, and at the same time build a multi-functional hydrogen utilization structure including two-stage power-to-gas, hydrogen fuel cells, hydrogen storage tanks, and hydrogen-doped cogeneration to fully exploit hydrogen. It can utilize the potential of collaborative operation with carbon capture power plants; on this basis, consider the transferability and substitutability characteristics of electric heating gas load, and construct an electric heating gas comprehensive demand response model; secondly, consider the mutual recognition relationship between carbon quotas and green certificates, Propose a green certificate-carbon trading mechanism; finally establish an integrated energy system with the optimization goal of minimizing the sum of energy purchase cost, demand response compensation cost, wind curtailment cost, carbon storage cost, carbon purchase cost, carbon trading cost and green certificate trading compensation. Optimize scheduling model. The results show that the proposed model can effectively reduce the total system cost and carbon emissions, improve clean energy consumption and energy utilization, and has significant economical and low-carbon properties. Copyright © 2025 Wang, Ji, Meng, Bai and Li.
引用
收藏
相关论文
共 50 条
  • [1] Low-carbon Economic Dispatch of Integrated Energy System Considering Carbon Capture Power Plant and Multi-utilization of Hydrogen Energy
    Liu Y.
    Hu Z.
    Chen J.
    Weng C.
    Gao M.
    Liu S.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2024, 48 (01): : 31 - 40
  • [2] Low-Carbon Economic Dispatch of Integrated Electricity-Gas Energy System Considering Carbon Capture, Utilization and Storage
    Liu, Xinghua
    Li, Xiang
    Tian, Jiaqiang
    Yang, Guoqing
    Wu, Huibao
    Ha, Rong
    Wang, Peng
    IEEE ACCESS, 2023, 11 : 25077 - 25089
  • [3] Low-carbon Economic Dispatch of Integrated Energy System Containing LNG Cold Energy Utilization
    Kang L.
    Jia Y.
    Tian F.
    Ma Z.
    Ren H.
    Gaodianya Jishu/High Voltage Engineering, 2022, 48 (02): : 575 - 583
  • [4] "Source-load" Low-carbon Economic Dispatch of Integrated Energy System Considering Carbon Capture System
    Tian F.
    Jia Y.
    Ren H.
    Bai Y.
    Huang T.
    Dianwang Jishu/Power System Technology, 2020, 44 (09): : 3346 - 3354
  • [5] Low-Carbon Economic Dispatch of Virtual Power Plant Considering Hydrogen Energy Storage and Tiered Carbon Trading in Multiple Scenarios
    Xie, Tuo
    Wang, Qi
    Zhang, Gang
    Zhang, Kaoshe
    Li, Hua
    PROCESSES, 2024, 12 (01)
  • [6] Low-carbon economic dispatch of integrated electricity and natural gas energy system considering carbon capture device
    Liu, Xinghua
    Li, Xiang
    Tian, Jiaqiang
    Cao, Hui
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2021,
  • [7] Low-carbon Economic Dispatch Considering the Integrated Flexible Operation Mode of Carbon Capture Power Plant
    Cui Y.
    Zeng P.
    Hui X.
    Li H.
    Zhao J.
    Dianwang Jishu/Power System Technology, 2021, 45 (05): : 1877 - 1885
  • [8] Low-carbon Economic Dispatch of Integrated Energy System With Augmented Carbon Emission Flow
    Zhang Y.
    Sun P.
    Ji X.
    Han X.
    Yang M.
    Dianwang Jishu/Power System Technology, 2023, 47 (08): : 3174 - 3183
  • [9] Low-carbon economic dispatch of integrated energy system based on liquid carbon dioxide energy storage
    Zhang, Jie
    Chen, Jie
    Ji, Xiaoning
    Sun, Hanzhe
    Liu, Jing
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [10] Low-carbon economic dispatch of integrated energy system considering the uncertainty of energy efficiency
    Xu, Yurui
    Song, Yi
    Deng, Youjun
    Liu, Zhibin
    Guo, Xiangwei
    Zhao, Dong
    ENERGY REPORTS, 2023, 9 : 1003 - 1010