Preparation of Thermal Conductivity-Enhanced, Microencapsulated Phase Change Materials Using Cellulose-Assisted Graphene Dispersion for Thermal Regulation in Textiles

被引:0
|
作者
Meng, Fanfan [1 ,2 ]
Li, Xiaopeng [2 ]
Zhang, Min [2 ]
Zhao, Yue [2 ]
Li, Zenghe [1 ]
Zhang, Shouxin [2 ]
Li, Heguo [2 ]
机构
[1] Beijing Univ Chem Technol, Coll Chem, Beijing 100029, Peoples R China
[2] State Key Lab NBC Protect Civilian, Beijing 100191, Peoples R China
关键词
MPCMs; thermal conductivity; graphene; cellulose; textile; dispersion; ENERGY-STORAGE; N-OCTADECANE; PHOTOTHERMAL CONVERSION; SOLAR PHOTOCATALYSIS; CHANGE MICROCAPSULES; SHELL; FABRICATION; COMPOSITE; NANOCELLULOSE; PERFORMANCES;
D O I
10.3390/polym16233291
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
To improve the poor thermal conductivity of microencapsulated phase change materials (MPCMs), a strategy was designed with effective combinations between graphene nanosheets (GNs) and shells to prepare thermally conductive MPCMs-GNs by using cellulose nanofibers (CNFs) to assist GN dispersion. The experiments and theoretical calculations both illustrated that CNFs effectively prevented GNs from aggregating due to the strong Van der Walls interactions between CNFs and GNs. The morphologies and structures of MPCMs with and without GNs were characterized by SEM, FTIR and XRD. The thermal properties of MPCMs were evaluated by DSC, TG, and a thermal conductivity test. The MPCMs with 10 wt.% GNs exhibited a melting enthalpy as high as 187.2 J/g and a thermal conductivity as high as 1.214 (W/m & sdot;K). The results indicate that the prepared MPCMs possessed a good thermal stability. In addition, MPCMs-GNs exhibited outstanding mechanical properties using a nano-indentation test. With an excellent melting enthalpy and thermal conductivity, the prepared MPCMs-GNs/textile showed a potential ability to be used for comfort thermal regulation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Microencapsulated heptadecane with calcium carbonate as thermal conductivity-enhanced phase change material for thermal energy storage
    Sari, Ahmet
    Saleh, Tawfik A.
    Hekimoglu, Gokhan
    Tyagi, V. V.
    Sharma, R. K.
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 328
  • [2] Preparation and Thermal Properties of Graphene Oxide-Microencapsulated Phase Change Materials
    Shang, Yu
    Zhang, Dong
    NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2016, 20 (3-4) : 147 - 157
  • [3] Preparation and thermal performance of gypsum boards incorporated with microencapsulated phase change materials for thermal regulation
    Zhang, Huanzhi
    Xu, Qingyang
    Zhao, Ziming
    Zhang, Jian
    Sun, Yujia
    Sun, Lixian
    Xu, Fen
    Sawada, Yutaka
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 102 : 93 - 102
  • [4] Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler
    Liu, Zhifang
    Chen, Zhonghua
    Yu, Fei
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 192 : 72 - 80
  • [5] Regulation of thermal conductivity of microencapsulated phase change materials via atomic layer deposition
    Li, Linfeng
    Huang, Yaoqi
    Li, Wenbin
    Zou, Liyi
    Wu, Xi
    Li, Yuanyuan
    Cheng, Xiaomin
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [6] The preparation of a suspension of microencapsulated phase change material (MPCM) and thermal conductivity enhanced by MXene for thermal energy storage
    Jin, Weizhun
    Huang, Qinghua
    Huang, Haimeng
    Lin, Zhengxiang
    Zhang, Jinghui
    Zhi, Fangfang
    Yang, Guohui
    Chen, Zhiyou
    Wang, Lei
    Jiang, Linhua
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [7] Preparation and characterization of polyurethane foams containing microencapsulated phase change materials for thermal energy storage and thermal regulation
    Liao, Honghui
    Liu, Yuan
    Chen, Rong
    Wang, Qi
    POLYMER INTERNATIONAL, 2021, 70 (05) : 619 - 627
  • [8] Thermal conductivity of cementitious composites containing microencapsulated phase change materials
    Ricklefs, Alex
    Thiele, Alexander M.
    Falzone, Gabriel
    Sant, Gaurav
    Pilon, Laurent
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 104 : 71 - 82
  • [9] Research progress on thermal conductivity enhancement of microencapsulated phase change materials
    Wang C.
    Zhang W.
    Zhang T.
    Zhu Q.
    Jingxi Huagong/Fine Chemicals, 2024, 41 (06): : 1195 - 1210
  • [10] Preparation of microencapsulated phase change materials (MEPCM) for thermal energy storage
    Su, Weiguang
    Darkwa, Jo
    Kokogiannakis, Georgis
    Zhou, Tongyu
    Li, Yiling
    IMPROVING RESIDENTIAL ENERGY EFFICIENCY INTERNATIONAL CONFERENCE, IREE 2017, 2017, 121 : 95 - 101