BrkgaCuda 2.0: a framework for fast biased random-key genetic algorithms on GPUs

被引:1
|
作者
Oliveira, Bruno A. [1 ]
Xavier, Eduardo C. [1 ]
Borin, Edson [1 ]
机构
[1] Institute of Computing, State University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, São Paulo, Campinas
基金
巴西圣保罗研究基金会;
关键词
BRKGA; CUDA; Framework; Genetic algorithms; GPU; Parallel;
D O I
10.1007/s00500-024-10336-7
中图分类号
学科分类号
摘要
In this paper, we present the development of a new version of the BrkgaCuda, called BrkgaCuda 2.0, to support the design and execution of Biased Random-Key Genetic Algorithms (BRKGA) on CUDA/GPU-enabled computing platforms, employing new techniques to accelerate the execution. We compare the performance of our implementation against the standard CPU implementation and a previous GPU implementation. In the same spirit as the standard implementation, all central aspects of the BRKGA logic are dealt with in our framework, and little effort is required to reuse the framework on another problem. The user can also implement the decoder on the CPU in C++ or GPU in CUDA. Moreover, the BrkgaCuda 2.0 provides a decoder that receives a permutation created by sorting the indices of the chromosomes using the genes as keys. To evaluate our framework, we use a total of 54 instances of the Traveling Salesman Problem, the Set Cover Problem, and the Capacitated Vehicle Routing Problem, using two decoders in the last one. Our focus on this work is to improve the performance within the BRKGA logic. We show that the BrkgaCuda 2.0 is the fastest among similar frameworks while still providing solutions of similar quality. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
引用
收藏
页码:12689 / 12704
页数:15
相关论文
共 30 条
  • [21] A memetic random-key genetic algorithm for a symmetric multi-objective traveling salesman problem
    Samanlioglu, Funda
    Ferrell, William G., Jr.
    Kurz, Mary E.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2008, 55 (02) : 439 - 449
  • [22] A biased random key genetic algorithm for the protein–ligand docking problem
    Pablo Felipe Leonhart
    Eduardo Spieler
    Rodrigo Ligabue-Braun
    Marcio Dorn
    Soft Computing, 2019, 23 : 4155 - 4176
  • [23] A biased random key genetic algorithm for the protein-ligand docking problem
    Leonhart, Pablo Felipe
    Spieler, Eduardo
    Ligabue-Braun, Rodrigo
    Dorn, Marcio
    SOFT COMPUTING, 2019, 23 (12) : 4155 - 4176
  • [24] A hybrid biased random key genetic algorithm approach for the unit commitment problem
    L. A. C. Roque
    D. B. M. M. Fontes
    F. A. C. C. Fontes
    Journal of Combinatorial Optimization, 2014, 28 : 140 - 166
  • [25] A hybrid biased random key genetic algorithm approach for the unit commitment problem
    Roque, L. A. C.
    Fontes, D. B. M. M.
    Fontes, F. A. C. C.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (01) : 140 - 166
  • [26] A Biased Random Key Genetic Algorithm for Solving the α-Neighbor p-Center Problem
    Perez-Pelo, Sergio
    Sanchez-Oro, Jesus
    Duarte, Abraham
    METAHEURISTICS, MIC 2024, PT I, 2024, 14753 : 9 - 14
  • [27] A multistart biased random key genetic algorithm for the flexible job shop scheduling problem with transportation
    Homayouni, S. Mahdi
    Fontes, Dalila B. M. M.
    Goncalves, Jose F.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2023, 30 (02) : 688 - 716
  • [28] A biased random key genetic algorithm approach for inventory-based multi-item lot-sizing problem
    Chan, F. T. S.
    Tibrewal, Rupak Kumar
    Prakash, Anuj
    Tiwari, M. K.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2015, 229 (01) : 157 - 171
  • [29] A multi-population hybrid biased random key genetic algorithm for hop-constrained trees in nonlinear cost flow networks
    Dalila B. M. M. Fontes
    José Fernando Gonçalves
    Optimization Letters, 2013, 7 : 1303 - 1324
  • [30] A multi-population hybrid biased random key genetic algorithm for hop-constrained trees in nonlinear cost flow networks
    Fontes, Dalila B. M. M.
    Goncalves, Jose Fernando
    OPTIMIZATION LETTERS, 2013, 7 (06) : 1303 - 1324