BrkgaCuda 2.0: a framework for fast biased random-key genetic algorithms on GPUs

被引:1
|
作者
Oliveira, Bruno A. [1 ]
Xavier, Eduardo C. [1 ]
Borin, Edson [1 ]
机构
[1] Institute of Computing, State University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, São Paulo, Campinas
基金
巴西圣保罗研究基金会;
关键词
BRKGA; CUDA; Framework; Genetic algorithms; GPU; Parallel;
D O I
10.1007/s00500-024-10336-7
中图分类号
学科分类号
摘要
In this paper, we present the development of a new version of the BrkgaCuda, called BrkgaCuda 2.0, to support the design and execution of Biased Random-Key Genetic Algorithms (BRKGA) on CUDA/GPU-enabled computing platforms, employing new techniques to accelerate the execution. We compare the performance of our implementation against the standard CPU implementation and a previous GPU implementation. In the same spirit as the standard implementation, all central aspects of the BRKGA logic are dealt with in our framework, and little effort is required to reuse the framework on another problem. The user can also implement the decoder on the CPU in C++ or GPU in CUDA. Moreover, the BrkgaCuda 2.0 provides a decoder that receives a permutation created by sorting the indices of the chromosomes using the genes as keys. To evaluate our framework, we use a total of 54 instances of the Traveling Salesman Problem, the Set Cover Problem, and the Capacitated Vehicle Routing Problem, using two decoders in the last one. Our focus on this work is to improve the performance within the BRKGA logic. We show that the BrkgaCuda 2.0 is the fastest among similar frameworks while still providing solutions of similar quality. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
引用
收藏
页码:12689 / 12704
页数:15
相关论文
共 30 条
  • [1] Biased random-key genetic algorithms: A tutorial with applications
    Noronha, Thiago F.
    Ribeiro, Celso C.
    2024 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, METAHEURISTICS & SWARM INTELLIGENCE, ISMSI 2024, 2024, : 110 - 115
  • [2] Biased random-key genetic algorithms for combinatorial optimization
    Goncalves, Jose Fernando
    Resende, Mauricio G. C.
    JOURNAL OF HEURISTICS, 2011, 17 (05) : 487 - 525
  • [3] Biased random-key genetic algorithms for combinatorial optimization
    José Fernando Gonçalves
    Mauricio G. C. Resende
    Journal of Heuristics, 2011, 17 : 487 - 525
  • [4] Biased Random-Key Genetic Algorithms for theWinner Determination Problem in Combinatorial Auctions
    de Andrade, Carlos Eduardo
    Toso, Rodrigo Franco
    Resende, Mauricio G. C.
    Miyazawa, Flavio Keidi
    EVOLUTIONARY COMPUTATION, 2015, 23 (02) : 279 - 307
  • [5] A C plus plus application programming interface for biased random-key genetic algorithms
    Toso, R. F.
    Resende, M. G. C.
    OPTIMIZATION METHODS & SOFTWARE, 2015, 30 (01) : 81 - 93
  • [6] A biased random-key genetic algorithm for road congestion minimization
    Luciana S. Buriol
    Michael J. Hirsch
    Panos M. Pardalos
    Tania Querido
    Mauricio G. C. Resende
    Marcus Ritt
    Optimization Letters, 2010, 4 : 619 - 633
  • [7] A biased random-key genetic algorithm for road congestion minimization
    Buriol, Luciana S.
    Hirsch, Michael J.
    Pardalos, Panos M.
    Querido, Tania
    Resende, Mauricio G. C.
    Ritt, Marcus
    OPTIMIZATION LETTERS, 2010, 4 (04) : 619 - 633
  • [8] A biased random-key genetic algorithm for the chordal completion problem
    Silva, Samuel E.
    Ribeiro, Celso C.
    Souza, Ueverton dos Santos
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (03) : 1559 - 1578
  • [9] A Multi-population Schema Designed for Biased Random-Key Genetic Algorithms on Continuous Optimisation Problems
    Boiani, Mateus
    Parpinelli, Rafael Stubs
    Dorn, Marcio
    INTELLIGENT SYSTEMS, PT I, 2022, 13653 : 444 - 457
  • [10] An adaptive biased random-key genetic algorithm for the tactical berth allocation problem
    Chaves, Antonio A.
    Oliveira, Rudinei M.
    Goncalves, Jose F.
    Lorena, Luiz A. N.
    39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 378 - 385