A State-of-the-Art Review on Phishing Website Detection Techniques

被引:1
作者
Li, Wenhao [1 ]
Manickam, Selvakumar [1 ]
Chong, Yung-Wey [2 ]
Leng, Weilan [3 ]
Nanda, Priyadarsi [4 ]
机构
[1] Univ Sains Malaysia, Cybersecur Res Ctr, George Town 11800, Penang, Malaysia
[2] Univ Sains Malaysia, Sch Comp Sci, George Town 11800, Penang, Malaysia
[3] CNPC, Chuanqing Drilling Engn Co Ltd, Res Inst Drilling & Prod Engn Technol, Guanghan 618300, Peoples R China
[4] Univ Technol Sydney, Fac Engn & IT, Sydney, NSW 2007, Australia
关键词
Phishing; Reviews; Surveys; Feature extraction; Visualization; Uniform resource locators; Convolutional neural networks; Blocklists; Analytical models; Organizations; Cybersecurity; deep learning; machine learning; phishing website detection;
D O I
10.1109/ACCESS.2024.3514972
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Phishing attacks remain a significant cybersecurity threat, with phishing websites serving as a primary tool for attackers to deceive users and steal sensitive information. The rapid evolution of phishing tactics has spurred the development of increasingly sophisticated detection mechanisms. This paper provides a comprehensive review of state-of-the-art techniques for phishing website detection, highlighting recent advancements in the field. In particular, it addresses emerging methods for detection, such as graph-based, large language model (LLM)-based approaches and phishing kit-based detection methods, which have not been extensively covered in previous surveys. By critically reviewing recent works from reliable databases, this study constructs a new taxonomy for phishing detection techniques. This review offers a comparison of these techniques, highlighting their strengths and limitations, and explores the challenges of real-world applications of these detection systems. Furthermore, the role of artificial intelligence (AI) in phishing website detection is discussed, and future research directions to improve detection capabilities are suggested. This work addresses emerging and uncovered phishing website detection methods in previous review papers and provides valuable insights for both researchers and practitioners working to develop more robust phishing website detection systems.
引用
收藏
页码:187976 / 188012
页数:37
相关论文
共 162 条
[1]  
5000best, 2012, 5000 BEST WEBSITES Homepage
[2]   Let's Encrypt: An Automated Certificate Authority to Encrypt the Entire Web [J].
Aas, Josh ;
Barnes, Richard ;
Case, Benton ;
Durumeric, Zakir ;
Eckersley, Peter ;
Flores-Lopez, Alan ;
Halderman, J. Alex ;
Hoffman-Andrews, Jacob ;
Kasten, James ;
Rescorla, Eric ;
Schoen, Seth ;
Warren, Brad .
PROCEEDINGS OF THE 2019 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'19), 2019, :2473-2487
[3]   VisualPhishNet: Zero-Day PhishingWebsite Detection by Visual Similarity [J].
Abdelnabi, Sahar ;
Krombholz, Katharina ;
Fritz, Mario .
CCS '20: PROCEEDINGS OF THE 2020 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2020, :1681-1698
[4]   Phishing Classification Techniques: A Systematic Literature Review [J].
Abdillah, Rahmad ;
Shukur, Zarina ;
Mohd, Masnizah ;
Murah, Ts Mohd Zamri .
IEEE ACCESS, 2022, 10 :41574-41591
[5]  
Abdullahi S. S., 2021, P INT C EL COMM COMP, P1
[6]   Multiplicity and transverse momentum evolution of charge-dependent correlations in pp, p-Pb, and Pb-Pb collisions at the LHC [J].
Adam, J. ;
Adamova, D. ;
Aggarwal, M. M. ;
Rinella, G. Aglieri ;
Agnello, M. ;
Agrawal, N. ;
Ahammed, Z. ;
Ahn, S. U. ;
Aiola, S. ;
Akindinov, A. ;
Alam, S. N. ;
Aleksandrov, D. ;
Alessandro, B. ;
Alexandre, D. ;
Alfaro Molina, R. ;
Alici, A. ;
Alkin, A. ;
Almaraz, J. R. M. ;
Alme, J. ;
Alt, T. ;
Altinpinar, S. ;
Altsybeev, I. ;
Alves Garcia Prado, C. ;
Andrei, C. ;
Andronic, A. ;
Anguelov, V. ;
Anielski, J. ;
Anticic, T. ;
Antinori, F. ;
Antonioli, P. ;
Aphecetche, L. ;
Appelshaeser, H. ;
Arcelli, S. ;
Arnaldi, R. ;
Arnold, O. W. ;
Arsene, I. C. ;
Arslandok, M. ;
Audurier, B. ;
Augustinus, A. ;
Averbeck, R. ;
Azmi, M. D. ;
Badala, A. ;
Baek, Y. W. ;
Bagnasco, S. ;
Bailhache, R. ;
Bala, R. ;
Baldisseri, A. ;
Baral, R. C. ;
Barbano, A. M. ;
Barbera, R. .
EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (02)
[7]  
Adap Vielka Angela V., 2023, WSSE 2023: Proceedings of the 2023 5th World Symposium on Software Engineering (WSSE), P135, DOI 10.1145/3631991.3632011
[8]   Bypassing Detection of URL-based Phishing Attacks Using Generative Adversarial Deep Neural Networks [J].
AlEroud, Ahmed ;
Karabatis, George .
PROCEEDINGS OF THE SIXTH INTERNATIONAL WORKSHOP ON SECURITY AND PRIVACY ANALYTICS (IWSPA'20), 2020, :53-60
[9]   An effective detection approach for phishing websites using URL and HTML']HTML features [J].
Aljofey, Ali ;
Jiang, Qingshan ;
Rasool, Abdur ;
Chen, Hui ;
Liu, Wenyin ;
Qu, Qiang ;
Wang, Yang .
SCIENTIFIC REPORTS, 2022, 12 (01)
[10]   A Comprehensive Survey on Identification and Analysis of Phishing Website based on Machine Learning Methods [J].
Alkawaz, Mohammed Hazim ;
Steven, Stephanie Joanne ;
Hajamydeen, Asif Iqbal ;
Ramli, Rusyaizila .
11TH IEEE SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS (ISCAIE 2021), 2021, :82-87