ProBID-Net: a deep learning model for protein-protein binding interface design

被引:1
作者
Chen, Zhihang [1 ]
Ji, Menglin [1 ]
Qian, Jie [1 ]
Zhang, Zhe [1 ]
Zhang, Xiangying [1 ]
Gao, Haotian [1 ]
Wang, Haojie [1 ]
Wang, Renxiao [1 ]
Qi, Yifei [1 ]
机构
[1] Fudan Univ, Sch Pharm, Dept Med Chem, 826 Zhangheng Rd, Shanghai 201203, Peoples R China
基金
中国国家自然科学基金;
关键词
COMPUTATIONAL DESIGN; NOVO DESIGN; PREDICTION; PROFILES; AFFINITY;
D O I
10.1039/d4sc02233e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Protein-protein interactions are pivotal in numerous biological processes. The computational design of these interactions facilitates the creation of novel binding proteins, crucial for advancing biopharmaceutical products. With the evolution of artificial intelligence (AI), protein design tools have swiftly transitioned from scoring-function-based to AI-based models. However, many AI models for protein design are constrained by assuming complete unfamiliarity with the amino acid sequence of the input protein, a feature most suited for de novo design but posing challenges in designing protein-protein interactions when the receptor sequence is known. To bridge this gap in computational protein design, we introduce ProBID-Net. Trained using natural protein-protein complex structures and protein domain-domain interface structures, ProBID-Net can discern features from known target protein structures to design specific binding proteins based on their binding sites. In independent tests, ProBID-Net achieved interface sequence recovery rates of 52.7%, 43.9%, and 37.6%, surpassing or being on par with ProteinMPNN in binding protein design. Validated using AlphaFold-Multimer, the sequences designed by ProBID-Net demonstrated a close correspondence between the design target and the predicted structure. Moreover, the model's output can predict changes in binding affinity upon mutations in protein complexes, even in scenarios where no data on such mutations were provided during training (zero-shot prediction). In summary, the ProBID-Net model is poised to significantly advance the design of protein-protein interactions.
引用
收藏
页码:19977 / 19990
页数:14
相关论文
共 77 条
[1]   RosettaAntibodyDesign (RAbD): A general framework for computational antibody design [J].
Adolf-Bryfogle, Jared ;
Kalyuzhniy, Oleks ;
Kubitz, Michael ;
Weitzner, Brian D. ;
Hu, Xiaozhen ;
Adachi, Yumiko ;
Schief, William R. ;
Dunbrack, Roland L., Jr. .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (04)
[2]   De novo protein design by deep network hallucination [J].
Anishchenko, Ivan ;
Pellock, Samuel J. ;
Chidyausiku, Tamuka M. ;
Ramelot, Theresa A. ;
Ovchinnikov, Sergey ;
Hao, Jingzhou ;
Bafna, Khushboo ;
Norn, Christoffer ;
Kang, Alex ;
Bera, Asim K. ;
DiMaio, Frank ;
Carter, Lauren ;
Chow, Cameron M. ;
Montelione, Gaetano T. ;
Baker, David .
NATURE, 2021, 600 (7889) :547-+
[3]   Development of High Affinity and High Specificity Inhibitors of Matrix Metalloproteinase 14 through Computational Design and Directed Evolution [J].
Arkadash, Valeria ;
Yosef, Gal ;
Shirian, Jason ;
Cohen, Itay ;
Horev, Yuval ;
Grossman, Moran ;
Sagi, Irit ;
Radisky, Evette S. ;
Shifman, Julia M. ;
Papo, Niv .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2017, 292 (08) :3481-3495
[4]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[5]   Principles for computational design of binding antibodies [J].
Baran, Dror ;
Pszolla, M. Gabriele ;
Lapidoth, Gideon D. ;
Norn, Christoffer ;
Dym, Orly ;
Unger, Tamar ;
Albeck, Shira ;
Tyka, Michael D. ;
Fleishman, Sarel J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (41) :10900-10905
[6]   Improved prediction of protein-protein interactions using AlphaFold2 [J].
Bryant, P. ;
Pozzati, G. ;
Elofsson, A. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[7]   Tight and specific lanthanide binding in a de novo TIM barrel with a large internal cavity designed by symmetric domain fusion [J].
Caldwell, Shane J. ;
Haydon, Ian C. ;
Piperidou, Nikoletta ;
Huang, Po-Ssu ;
Bick, Matthew J. ;
Sjostrom, H. Sebastian ;
Hilvert, Donald ;
Baker, David ;
Zeymer, Cathleen .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (48) :30362-30369
[8]   De novo design of picomolar SARS-CoV-2 miniprotein inhibitors [J].
Cao, Longxing ;
Goreshnik, Inna ;
Coventry, Brian ;
Case, James Brett ;
Miller, Lauren ;
Kozodoy, Lisa ;
Chen, Rita E. ;
Carter, Lauren ;
Walls, Alexandra C. ;
Park, Young-Jun ;
Strauch, Eva-Maria ;
Stewart, Lance ;
Diamond, Michael S. ;
Veesler, David ;
Baker, David .
SCIENCE, 2020, 370 (6515) :426-+
[9]   To Improve Protein Sequence Profile Prediction through Image Captioning on Pairwise Residue Distance Map [J].
Chen, Sheng ;
Sun, Zhe ;
Lin, Lihua ;
Liu, Zifeng ;
Liu, Xun ;
Chong, Yutian ;
Lu, Yutong ;
Zhao, Huiying ;
Yang, Yuedong .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (01) :391-399
[10]   ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker [J].
Chen, Yuning ;
Zhang, Ya-Nan ;
Yan, Renhong ;
Wang, Guifeng ;
Zhang, Yuanyuan ;
Zhang, Zhe-Rui ;
Li, Yaning ;
Ou, Jianxia ;
Chu, Wendi ;
Liang, Zhijuan ;
Wang, Yongmei ;
Chen, Yi-Li ;
Chen, Ganjun ;
Wang, Qi ;
Zhou, Qiang ;
Zhang, Bo ;
Wang, Chunhe .
SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2021, 6 (01)