All-silicon non-volatile optical memory based on photon avalanche-induced trapping

被引:0
作者
Yuan, Yuan [1 ,2 ]
Peng, Yiwei [1 ]
Cheung, Stanley [1 ,3 ]
Sorin, Wayne V. [1 ]
Hooten, Sean [1 ]
Huang, Zhihong [1 ]
Liang, Di [4 ]
Zhang, Jiuyi [1 ]
Fiorentino, Marco [1 ]
Beausoleil, Raymond G. [1 ]
机构
[1] Hewlett Packard Labs, Hewlett Packard Enterprise, Milpitas, CA 95035 USA
[2] Northeastern Univ, Dept Elect & Comp Engn, Govt Emeritus, Oakland, CA 94613 USA
[3] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
[4] Univ Michigan, Elect Engn & Comp Sci Dept, Ann Arbor, MI 48109 USA
来源
COMMUNICATIONS PHYSICS | 2025年 / 8卷 / 01期
关键词
DEFECTS;
D O I
10.1038/s42005-025-01934-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Implementing on-chip non-volatile optical memories has long been an actively pursued goal, promising significant enhancements in the capability and energy efficiency of photonic integrated circuits. Here, we demonstrate an non-volatile optical memory exclusively using the most common semiconductor material, silicon. By manipulating the photon avalanche effect, we introduce a trapping effect at the silicon-silicon oxide interface, which in turn demonstrates a non-volatile reprogrammable optical memory cell with a record-high 4-bit encoding, robust retention and endurance. This silicon avalanche-induced trapping memory provides a distinctively cost-efficient and high-reliability route to realize optical data storage in standard silicon foundry processes. We demonstrate its applications in trimming in optical interconnects and in-memory computing. Our in-memory computing test case reduces energy consumption by approximately 83% compared to conventional optical approaches.
引用
收藏
页数:11
相关论文
共 52 条
  • [1] Challenges hindering memristive neuromorphic hardware from going mainstream
    Adam, Gina C.
    Khiat, Ali
    Prodromakis, Themis
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [2] Optical RAM and integrated optical memories: a survey
    Alexoudi, Theoni
    Kanellos, George Theodore
    Pleros, Nikos
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
  • [3] [Anonymous], 2010, Simulating the hysteresis effects of si/sio2 interface traps
  • [4] Baba S., 1986, International Electron Devices Meeting 1986. Technical Digest (Cat. No.86CH2381-2), P734
  • [5] Silicon photonic read-only memory
    Barrios, Carlos Angulo
    Lipson, Michal
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (07) : 2898 - 2905
  • [6] All-Optical Digital Circuits Exploiting SOA-Based Loop Memories
    Berrettini, Gianluca
    An Truong Nguyen
    Lazzeri, Emma
    Meloni, Gianluca
    Scaffardi, Mirco
    Poti, Luca
    Bogoni, Antonella
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2012, 18 (02) : 847 - 858
  • [7] Cheung S., 2022, CLEO SCI INNOVATIONS
  • [8] Ultra-Power-Efficient, Electrically Programmable, Multi-State Photonic Flash Memory on a Heterogeneous III-V/Si Platform
    Cheung, Stanley
    Liang, Di
    Yuan, Yuan
    Peng, Yiwei
    Tossoun, Bassem
    Hu, Yingtao
    Xiao, Xian
    Sorin, Wayne V.
    Kurczveil, Geza
    Beausoleil, Raymond G.
    [J]. LASER & PHOTONICS REVIEWS, 2024, 18 (10)
  • [9] Non-Volatile III-V/Si Photonic Charge-Trap Flash Memory
    Cheung, Stanley
    Yuan, Yuan
    Peng, Yiwei
    Hu, Yingtao
    Kurczveil, Geza
    Liang, Di
    Beausoleil, Raymond G.
    [J]. 2023 IEEE PHOTONICS CONFERENCE, IPC, 2023,
  • [10] Non-Volatile Memristive III-V/Si Photonics
    Cheung, Stanley
    Tossoun, Bassem
    Yuan, Yuan
    Hu, Yingtao
    Kurczveil, Geza
    Peng, Yiwei
    Liang, Di
    Beausoleil, Raymond G.
    [J]. 2023 IEEE SILICON PHOTONICS CONFERENCE, SIPHOTONICS, 2023,