共 60 条
- [1] Wong S.C., Gatt A., Stamatescu V., McDonnell M.D., Understanding data augmentation for classification: When to warp?, Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1-6, (2016)
- [2] Zhong Z., Zheng L., Kang G., Li S., Yang Y., Random erasing data augmentation, Proceedings of the AAAI Conference on Artificial Intelligence, 34, pp. 13001-13008
- [3] Yun S., Han D., Oh S.J., Chun S., Choe J., Yoo Y., Cutmix: Regularization strategy to train strong classifiers with localizable features, Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023-6032
- [4] Chen P., Liu S., Zhao H., Wang X., Jia J., Gridmask data augmentation, arXiv, (2020)
- [5] Bochkovskiy A., Wang C.Y., Liao H.Y.M., Yolov4: Optimal speed and accuracy of object detection, arXiv, (2020)
- [6] Georgievski B., Image augmentation with neural style transfer, Proceedings of the International Conference on ICT Innovations, pp. 212-224, (2019)
- [7] Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y., Generative adversarial nets, Adv. Neural Inf. Process. Syst, 27, (2014)
- [8] Ghiasi G., Cui Y., Srinivas A., Qian R., Lin T., Cubuk E.D., Le Q.V., Zoph B., Simple copy-paste is a strong data augmentation method for instance segmentation, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2918-2928
- [9] Bao H., Dong L., Piao S., Wei F., Beit: Bert pre-training of image transformers, arXiv, (2021)
- [10] He K., Chen X., Xie S., Li Y., Dollar P., Girshick R., Masked autoencoders are scalable vision learners, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000-16009