In Situ Phase Transformation-Enabled Metal-Organic Frameworks for Efficient CO2 Electroreduction to Multicarbon Products in Strong Acidic Media

被引:13
作者
Yu, Jinli [1 ]
Xiao, Juan [2 ]
Guo, Liang [1 ,3 ]
Xie, Zezhong [4 ]
Wang, Kun [2 ]
Wang, Yunhao [1 ]
Hao, Fengkun [1 ]
Ma, Yangbo [1 ]
Zhou, Jingwen [1 ,3 ]
Lu, Pengyi [1 ,3 ]
Wang, Guozhi [1 ,3 ]
Meng, Xiang [1 ,3 ]
Zhu, Zonglong [1 ]
Li, Qiang [5 ]
Ling, Chongyi [5 ]
Sun, Jingying [8 ]
Wang, Yi [2 ]
Song, Shuqin [2 ]
Fan, Zhanxi [1 ,3 ,6 ,7 ]
机构
[1] City Univ Hong Kong, Dept Chem, Hong Kong 999077, Peoples R China
[2] Sun Yat Sen Univ, Sch Mat Sci & Engn, Sch Chem Engn & Technol, Sch Chem,PCFM Lab,Key Lab Low Carbon Chem & Energy, Guangzhou 510275, Peoples R China
[3] City Univ Hong Kong, Natl Precious Met Mat Engn Res Ctr NPMM, Hong Kong Branch, Hong Kong 999077, Peoples R China
[4] Sun Yat Sen Univ, Sch Chem, Guangzhou 510275, Peoples R China
[5] Southeast Univ, Minist Educ, Sch Phys, Key Lab Quantum Mat & Devices, Nanjing 211189, Peoples R China
[6] City Univ Hong Kong, Hong Kong Inst Clean Energy, Kowloon, Hong Kong 999077, Peoples R China
[7] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[8] Sun Yat Sen Univ, Instrumental Anal & Res Ctr, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
electrocatalysis; carbon dioxide reduction reaction; acidic media; metal-organic frameworks; multicarbon products; CARBON-DIOXIDE ELECTROREDUCTION; TOTAL-ENERGY CALCULATIONS;
D O I
10.1021/acsnano.4c12245
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical CO2 reduction reaction (CO2RR) has been acknowledged as a promising strategy to relieve carbon emissions by converting CO2 to essential chemicals. Despite significant progresses that have been made in neutral and alkaline media, the implementation of CO2RR in acidic conditions remains challenging due to the harsh conditions, especially in producing high-value multicarbon products. Here, we report that Cu-btca (btca = benzotriazole-5-carboxylic acid) metal-organic framework (MOF) nanostructures can act as a stable catalyst for the CO2RR in an acidic environment. The Cu-btca MOF undergoes phase transformation and morphology evolution during electrolysis, forming a stable porous Cu-btca MOF network. The resultant MOF network exhibits excellent selectivity toward ethylene and multicarbon products with Faradaic efficiencies of 51.2% and 81.9%, respectively, in a strong acidic electrolyte with a flow cell at 300 mA/cm2. Mechanism studies uncover that the Cu-btca MOF network can limit the proton reduction to suppress hydrogen evolution and maintain high local *CO concentration to promote CO2RR. Theoretical calculations suggest that two adjacent Cu sites in the Cu-btca MOF provide a favorable microenvironment for carbon-carbon coupling, facilitating the multicarbon production. This work reveals that rational structure control of MOFs can enable highly selective and efficient CO2 electroreduction to multicarbon products in strong acidic conditions toward practical applications.
引用
收藏
页码:33602 / 33613
页数:12
相关论文
共 69 条
[1]   Single Atom Bi Decorated Copper Alloy Enables C-C Coupling for Electrocatalytic Reduction of CO2 into C2+ Products [J].
Cao, Yucheng ;
Chen, Suya ;
Bo, Shuowen ;
Fan, Wenjun ;
Li, Jiangnan ;
Jia, Chunmei ;
Zhou, Zhen ;
Liu, Qinghua ;
Zheng, Lirong ;
Zhang, Fuxiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (30)
[2]   Ethylene Selectivity in Electrocatalytic CO2 Reduction on Cu Nanomaterials: A Crystal Phase-Dependent Study [J].
Chen, Ye ;
Fan, Zhanxi ;
Wang, Jiong ;
Ling, Chongyi ;
Niu, Wenxin ;
Huang, Zhiqi ;
Liu, Guigao ;
Chen, Bo ;
Lai, Zhuangchai ;
Liu, Xiaozhi ;
Li, Bing ;
Zong, Yun ;
Gu, Lin ;
Wang, Jinlan ;
Wang, Xin ;
Zhang, Hua .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (29) :12760-12766
[3]   Metal-Organic Frameworks Mediate Cu Coordination for Selective CO2 Electroreduction [J].
Dae-Hyun Nam ;
Bushuyev, Oleksandr S. ;
Li, Jun ;
De Luna, Phil ;
Seifitokaldani, Ali ;
Cao-Thang Dinh ;
de Arquer, F. Pelayo Garcia ;
Wang, Yuhang ;
Liang, Zhiqin ;
Proppe, Andrew H. ;
Tan, Chih Shan ;
Todorovic, Petar ;
Shekhah, Osama ;
Gabardo, Christine M. ;
Jo, Jea Woong ;
Choi, Jongmin ;
Choi, Min-Jae ;
Baek, Se-Woong ;
Kim, Junghwan ;
Sinton, David ;
Kelley, Shana O. ;
Eddaoudi, Mohamed ;
Sargent, Edward H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (36) :11378-11386
[4]   Heterophase fcc-2H-fcc gold nanorods [J].
Fan, Zhanxi ;
Bosman, Michel ;
Huang, Zhiqi ;
Chen, Ye ;
Ling, Chongyi ;
Wu, Lin ;
Akimov, Yuriy A. ;
Laskowski, Robert ;
Chen, Bo ;
Ercius, Peter ;
Zhang, Jian ;
Qi, Xiaoying ;
Goh, Min Hao ;
Ge, Yiyao ;
Zhang, Zhicheng ;
Niu, Wenxin ;
Wang, Jinlan ;
Zheng, Haimei ;
Zhang, Hua .
NATURE COMMUNICATIONS, 2020, 11 (01)
[5]   Experimental evidence of distinct sites for CO2-to-CO and CO conversion on Cu in the electrochemical CO2 reduction reaction [J].
Gao, Wenqiang ;
Xu, Yifei ;
Fu, Linke ;
Chang, Xiaoxia ;
Xu, Bingjun .
NATURE CATALYSIS, 2023, 6 (10) :885-894
[6]   Effect of the Damping Function in Dispersion Corrected Density Functional Theory [J].
Grimme, Stefan ;
Ehrlich, Stephan ;
Goerigk, Lars .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (07) :1456-1465
[7]   Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium [J].
Gu, Jun ;
Liu, Shuo ;
Ni, Weiyan ;
Ren, Wenhao ;
Haussener, Sophia ;
Hu, Xile .
NATURE CATALYSIS, 2022, 5 (04) :268-276
[8]   Electronic Structure Design of Transition Metal-Based Catalysts for Electrochemical Carbon Dioxide Reduction [J].
Guo, Liang ;
Zhou, Jingwen ;
Liu, Fu ;
Meng, Xiang ;
Ma, Yangbo ;
Hao, Fengkun ;
Xiong, Yuecheng ;
Fan, Zhanxi .
ACS NANO, 2024, 18 (14) :9823-9851
[9]   Dicopper(I) Sites Confined in a Single Metal-Organic Layer Boosting the Electroreduction of CO2 to CH4 in a Neutral Electrolyte [J].
Heng, Jin-Meng ;
Zhu, Hao-Lin ;
Zhao, Zhen-Hua ;
Yu, Can ;
Liao, Pei-Qin ;
Chen, Xiao-Ming .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (39) :21672-21678
[10]   A fast and robust algorithm for Bader decomposition of charge density [J].
Henkelman, Graeme ;
Arnaldsson, Andri ;
Jonsson, Hannes .
COMPUTATIONAL MATERIALS SCIENCE, 2006, 36 (03) :354-360