Sequential Bayesian Inference and Monte-Carlo Sampling Using Memristor Stochasticity

被引:0
作者
Malik, Adil [1 ]
Papavassiliou, Christos [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Memristors; Circuits; Stochastic processes; Monte Carlo methods; Bayes methods; Generators; Random variables; Noise; Trajectory; Pulse measurements; Memristor; model; probabilistic computing; Bayesian inference; Monte Carlo sampling; particle filter; AI hardware;
D O I
10.1109/TCSI.2024.3470318
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we study the stochastic state trajectory and conductance distributions of memristors under periodic pulse excitation. Our results, backed by experimental evidence, reveal that practical memristors exhibit a 1/f2 Brownian noise power spectrum. Based on this, we develop a Memristive Distribution Generator (MDG) circuit that produces tunable analog distributions by exploiting the physical stochasticity of memristors. By encoding the prior distributions of Bayesian problems in the physical output samples of these circuits, we demonstrate that Monte-Carlo sampling can be devised without knowledge of the analytical output distribution of the memristor. Using examples of 1-D Bayesian linear regression and a dynamic 2-D nonlinear localisation problem, we show how MDG circuits can act as a tunable source of randomness, efficiently representing distributions of interest. Our results, obtained using Pt/TiO2 /Pt memristors, validate the use of memristor-based MDGs for implementing probabilistic algorithms.
引用
收藏
页码:5506 / 5518
页数:13
相关论文
共 29 条
[11]   Random Telegraph Noise in Metal-Oxide Memristors for True Random Number Generators: A Materials Study [J].
Li, Xuehua ;
Zanotti, Tommaso ;
Wang, Tao ;
Zhu, Kaichen ;
Puglisi, Francesco Maria ;
Lanza, Mario .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (27)
[12]   A Memristor Circuit Implementing Tunable Stochastic Distributions for Bayesian Inference and Monte Carlo Sampling [J].
Malik, Adil ;
Papavassiliou, Christos .
2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
[13]  
Malik Adil, 2023, 2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS), P1, DOI 10.1109/ICECS58634.2023.10382731
[14]  
Malik Adil, 2023, 2023 12th International Conference on Modern Circuits and Systems Technologies (MOCAST), P1, DOI 10.1109/MOCAST57943.2023.10176571
[15]  
Malik A., 2023, U.K. Patent, Patent No. [215172GB, 215172]
[16]   A Scalable, Low-Maintenance, Smart Water Quality Monitoring System [J].
Malissovas, Anastasios ;
Narayan, Nitin ;
Boonen, Thijl ;
Patki, Shrishail .
2022 IEEE SENSORS, 2022,
[17]   Efficient reservoir computing with memristors [J].
Marinella, Matthew J. ;
Agarwal, Sapan .
NATURE ELECTRONICS, 2019, 2 (10) :437-438
[18]   Stochasticity Modeling in Memristors [J].
Naous, Rawan ;
Al-Shedivat, Maruan ;
Salama, Khaled Nabil .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2016, 15 (01) :15-28
[19]  
Prodromakis T, 2010, IEEE INT SYMP CIRC S, P1520, DOI 10.1109/ISCAS.2010.5537379
[20]   Random Telegraph Noise in Resistive Random Access Memories: Compact Modeling and Advanced Circuit Design [J].
Puglisi, Francesco Maria ;
Zagni, Nicolo ;
Larcher, Luca ;
Pavan, Paolo .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (07) :2964-2972