Sequential Bayesian Inference and Monte-Carlo Sampling Using Memristor Stochasticity

被引:0
作者
Malik, Adil [1 ]
Papavassiliou, Christos [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Memristors; Circuits; Stochastic processes; Monte Carlo methods; Bayes methods; Generators; Random variables; Noise; Trajectory; Pulse measurements; Memristor; model; probabilistic computing; Bayesian inference; Monte Carlo sampling; particle filter; AI hardware;
D O I
10.1109/TCSI.2024.3470318
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we study the stochastic state trajectory and conductance distributions of memristors under periodic pulse excitation. Our results, backed by experimental evidence, reveal that practical memristors exhibit a 1/f2 Brownian noise power spectrum. Based on this, we develop a Memristive Distribution Generator (MDG) circuit that produces tunable analog distributions by exploiting the physical stochasticity of memristors. By encoding the prior distributions of Bayesian problems in the physical output samples of these circuits, we demonstrate that Monte-Carlo sampling can be devised without knowledge of the analytical output distribution of the memristor. Using examples of 1-D Bayesian linear regression and a dynamic 2-D nonlinear localisation problem, we show how MDG circuits can act as a tunable source of randomness, efficiently representing distributions of interest. Our results, obtained using Pt/TiO2 /Pt memristors, validate the use of memristor-based MDGs for implementing probabilistic algorithms.
引用
收藏
页码:5506 / 5518
页数:13
相关论文
共 29 条
  • [1] Baker, 2010, CMOSCIRCUIT DESIGN L
  • [2] Picosecond multilevel resistive switching in tantalum oxide thin films
    Boettger, Ulrich
    von Witzleben, Moritz
    Havel, Viktor
    Fleck, Karsten
    Rana, Vikas
    Waser, Rainer
    Menzel, Stephan
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [3] Stimulated Ionic Telegraph Noise in Filamentary Memristive Devices
    Brivio, Stefano
    Frascaroli, Jacopo
    Covi, Erika
    Spiga, Sabina
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [4] Candy James V, 2016, Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods, P5
  • [5] Cox D., 1965, The Theory of Stochastic Processes
  • [6] In situ learning using intrinsic memristor variability via Markov chain Monte Carlo sampling
    Dalgaty, Thomas
    Castellani, Niccolo
    Turck, Clement
    Harabi, Kamel-Eddine
    Querlioz, Damien
    Vianello, Elisa
    [J]. NATURE ELECTRONICS, 2021, 4 (02) : 151 - 161
  • [7] Doucet A, 2001, STAT ENG IN, P3
  • [8] Nanoscale Memristor Device as Synapse in Neuromorphic Systems
    Jo, Sung Hyun
    Chang, Ting
    Ebong, Idongesit
    Bhadviya, Bhavitavya B.
    Mazumder, Pinaki
    Lu, Wei
    [J]. NANO LETTERS, 2010, 10 (04) : 1297 - 1301
  • [9] Self-clocking fast and variation tolerant true random number generator based on a stochastic mott memristor
    Kim, Gwangmin
    In, Jae Hyun
    Kim, Young Seok
    Rhee, Hakseung
    Park, Woojoon
    Song, Hanchan
    Park, Juseong
    Kim, Kyung Min
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] VTEAM: A General Model for Voltage-Controlled Memristors
    Kvatinsky, Shahar
    Ramadan, Misbah
    Friedman, Eby G.
    Kolodny, Avinoam
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2015, 62 (08) : 786 - 790