Quantum many-body scars from unstable periodic orbits

被引:2
|
作者
Evrard, Bertrand [1 ,2 ]
Pizzi, Andrea [3 ,4 ]
Mistakidis, Simeon I. [3 ,5 ,6 ]
Dag, Ceren B. [3 ,6 ]
机构
[1] Swiss Fed Inst Technol, Inst Quantum Elect, CH-8093 Zurich, Switzerland
[2] Univ Paris Cite, CNRS, Mat & Phenomenes Quant, F-75013 Paris, France
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[5] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA
[6] Harvard & Smithsonian, Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA
关键词
STATISTICAL-MECHANICS; EIGENFUNCTIONS; THERMALIZATION;
D O I
10.1103/PhysRevB.110.144302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Unstable periodic orbits (UPOs) play a key role in the theory of chaos, constituting the "skeleton" of classical chaotic systems and "scarring" the eigenstates of the corresponding quantum system. Recently, nonthermal many-body eigenstates embedded in an otherwise thermal spectrum have been identified as a many-body generalization of quantum scars. The latter, however, are not clearly associated to a chaotic phase space, and the connection between the single- and many-body notions of quantum scars remains therefore incomplete. Here, we find the first quantum many-body scars originating from UPOs of a chaotic phase space. Remarkably, these states verify the eigenstate thermalization hypothesis, and we thus refer to them as thermal quantum many-body scars. While they do not preclude thermalization, their spectral structure featuring approximately equispaced towers of states yields an anomalous oscillatory dynamics preceding thermalization for wavepackets initialized on an UPO. Remarkably, our model hosts both types of scars, thermal and nonthermal, and allows us to study the crossover between the two. Our work illustrates the fundamental principle of classical-quantum correspondence in a many-body system and its limitations.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Quantum Many-Body Scars beyond the PXP Model in Rydberg Simulators
    Kerschbaumer, Aron
    Ljubotina, Marko
    Serbyn, Maksym
    Desaules, Jean-Yves
    PHYSICAL REVIEW LETTERS, 2025, 134 (16)
  • [42] Quantum many-body scars in few-body dipole-dipole interactions
    Spielman, Sarah E.
    Handian, Alicia
    Inman, Nina P.
    Carroll, Thomas J.
    Noel, Michael W.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [43] Error-mitigated simulation of quantum many-body scars on quantum computers with pulse-level control
    Chen, I. -Chi
    Burdick, Benjamin
    Yao, Yongxin
    Orth, Peter P.
    Iadecola, Thomas
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [44] Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving
    Maskara, N.
    Michailidis, A. A.
    Ho, W. W.
    Bluvstein, D.
    Choi, S.
    Lukin, M. D.
    Serbyn, M.
    PHYSICAL REVIEW LETTERS, 2021, 127 (09)
  • [45] Many-Body Delocalization as a Quantum Avalanche
    Thiery, Thimothee
    Huveneers, Francois
    Mueller, Markus
    De Roeck, Wojciech
    PHYSICAL REVIEW LETTERS, 2018, 121 (14)
  • [46] Unsupervised detection of decoupled subspaces: Many-body scars and beyond
    Szoldra, Tomasz
    Sierant, Piotr
    Lewenstein, Maciej
    Zakrzewski, Jakub
    PHYSICAL REVIEW B, 2022, 105 (22)
  • [47] Quantum many-body scars in the Bose-Hubbard model with a three-body constraint
    Kaneko, Ryui
    Kunimi, Masaya
    Danshita, Ippei
    PHYSICAL REVIEW A, 2024, 109 (01)
  • [48] Probing Many-Body Quantum Chaos with Quantum Simulators
    Joshi, Lata Kh
    Elben, Andreas
    Vikram, Amit
    Vermersch, Benoit
    Galitski, Victor
    Zoller, Peter
    PHYSICAL REVIEW X, 2022, 12 (01)
  • [49] Theory of Robust Quantum Many-Body Scars in Long-Range Interacting Systems
    Lerose, Alessio
    Parolini, Tommaso
    Fazio, Rosario
    Abanin, Dmitry A.
    Pappalardi, Silvia
    PHYSICAL REVIEW X, 2025, 15 (01):
  • [50] Exact quantum many-body scars in higher-spin kinetically constrained models
    Yuan, Dong
    Zhang, Shun-Yao
    Deng, Dong-Ling
    PHYSICAL REVIEW B, 2023, 108 (19)