Optimal Thermal Resistance Model of GaN HEMTs Considering Thickness-Dependent Thermal Conductivity

被引:0
作者
Ma, Xiao [1 ]
Wang, Kai [2 ]
Chen, Jingxiong [2 ]
Wang, Hong [1 ,3 ]
机构
[1] South China Univ Technol, Engn Res Ctr Optoelectronicof Guangdong Prov, Sch Phys & Optoelect, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510640, Peoples R China
[3] South China Univ Technol, Zhongshan Inst Modern Ind Technol, Zhongshan 528437, Peoples R China
关键词
Thermal conductivity; Thermal resistance; Conductivity; Resistance; Substrates; Gallium nitride; MODFETs; HEMTs; Scattering; Temperature measurement; DebyebKKCallaway model; gallium nitride (GaN) high-electron-mobility-transistor (HEMT); thermal resistance; thermal simulation; BOUNDARY RESISTANCE; THERMOREFLECTANCE; THERMOGRAPHY; FILMS;
D O I
10.1109/TED.2024.3474610
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a thermal resistance model for gallium nitride (GaN) high electron mobility transistor (HEMT) that considers the thickness-dependence and anisotropy of the thermal conductivity of GaN films to improve the calculation accuracy. In this study, the Debye-Callaway model is used to calculate the in-plane and cross-plane thermal conductivity of the GaN buffer layer as a function of layer thickness. An electrical model of heat generation profiles is established by using the technology computer-aided design (TCAD). The temperature distribution is predicted by the finite element methods (FEMs) simulations. We confirm that as the thickness of the GaN layer increases, the total thermal resistance on diamond, SiC, and Si substrates decreases first and then increases, reaching their minimum values at 3.6, 5, and 48 mu m at a thermal boundary resistance (TBR) of 30 m(2) center dot K/GW, respectively. Moreover, there is a lack of research on the optimal GaN thickness of devices with different substrates. Based on this model, we investigate the effects of TBR, power dissipation level, and gate pitch values on the optimal GaN thickness of devices with different substrates (Si, SiC, and diamond).
引用
收藏
页码:7326 / 7333
页数:8
相关论文
共 36 条
  • [1] AlGaN/GaN heterostructure field-effect transistor model including thermal effects
    Albrecht, JD
    Ruden, PP
    Binari, SC
    Ancona, MG
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2000, 47 (11) : 2031 - 2036
  • [2] Altman D, 2014, INTSOC CONF THERMAL, P1199, DOI 10.1109/ITHERM.2014.6892416
  • [3] Bar-Cohen A., 2013, J NANOTECHNOLOGY ENG, V4, P020907, DOI DOI 10.1115/1.4023898
  • [4] Size dictated thermal conductivity of GaN
    Beechem, Thomas E.
    McDonald, Anthony E.
    Fuller, Elliot J.
    Talin, A. Alec
    Rost, Christina M.
    Maria, Jon-Paul
    Gaskins, John T.
    Hopkins, Patrick E.
    Allerman, Andrew A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2016, 120 (09)
  • [5] Thermal Boundary Resistance in GaN Films Measured by Time Domain Thermoreflectance with Robust Monte Carlo Uncertainty Estimation
    Bougher, Thomas L.
    Yates, Luke
    Lo, Chien-Fong
    Johnson, Wayne
    Graham, Samuel
    Cola, Baratunde A.
    [J]. NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2016, 20 (01) : 22 - 32
  • [6] MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES
    CALLAWAY, J
    [J]. PHYSICAL REVIEW, 1959, 113 (04): : 1046 - 1051
  • [7] Interfacial thermal resistance: Past, present, and future
    Chen, Jie
    Xu, Xiangfan
    Zhou, Jun
    Li, Baowen
    [J]. REVIEWS OF MODERN PHYSICS, 2022, 94 (02)
  • [8] A Numerical Study on Comparing the Active and Passive Cooling of AlGaN/GaN HEMTs
    Chen, Xiuping
    Donmezer, Fatma Nazli
    Kumar, Satish
    Graham, Samuel
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (12) : 4056 - 4061
  • [9] Phonon scattering in strained transition layers for GaN heteroepitaxy
    Cho, Jungwan
    Li, Yiyang
    Hoke, William E.
    Altman, David H.
    Asheghi, Mehdi
    Goodson, Kenneth E.
    [J]. PHYSICAL REVIEW B, 2014, 89 (11)
  • [10] Low Thermal Resistances at GaN-SiC Interfaces for HEMT Technology
    Cho, Jungwan
    Bozorg-Grayeli, Elah
    Altman, David H.
    Asheghi, Mehdi
    Goodson, Kenneth E.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2012, 33 (03) : 378 - 380