Rate-fidelity tradeoff in cavity-based remote entanglement generation

被引:1
作者
Tanji, Kazufumi [1 ]
Takahashi, Hiroki [2 ]
Roga, Wojciech [1 ]
Takeoka, Masahiro [1 ]
机构
[1] Keio Univ, Fac Sci & Engn, Dept Elect & Elect Engn, 3-14-1 Hiyoshi,Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
[2] Okinawa Inst Sci & Technol Grad Univ, Expt Quantum Informat Phys Unit, 1919-1 Tancha, Kunigami, Okinawa 9040495, Japan
关键词
HERALDED ENTANGLEMENT; SINGLE ATOMS; QUANTUM;
D O I
10.1103/PhysRevA.110.042405
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The qubit scalability imposes a paramount challenge in the field of quantum computing. Photonic interconnects between distinct quantum computing modules provide a solution to deal with this issue. The fundamental part of this approach is entanglement distribution via traveling photons emitted by matter qubits. However, randomness of the spontaneous emission in the matter qubits limits both the entanglement fidelity and the generation rate. In this paper, by numerical and analytical methods, we investigate the relationship between the entanglement affected by the spontaneous emission and the waveform of the pump pulse used in the photon generation. We confirm and analyze a rate-fidelity trade-off in the entanglement swapping with Gaussian pump pulses and show that a simple extension to non-Gaussian pump pulses improves the trade-off in a certain parameter region. Furthermore we extend our analysis to entanglement distribution in the general multipartite setting and show that the analysis of the bipartite entanglement can be straightforwardly applied in this case as well.
引用
收藏
页数:14
相关论文
共 46 条
[31]   Robust Concurrent Remote Entanglement Between Two Superconducting Qubits [J].
Narla, A. ;
Shankar, S. ;
Hatridge, M. ;
Leghtas, Z. ;
Sliwa, K. M. ;
Zalys-Geller, E. ;
Mundhada, S. O. ;
Pfaff, W. ;
Frunzio, L. ;
Schoelkopf, R. J. ;
Devoret, M. H. .
PHYSICAL REVIEW X, 2016, 6 (03)
[32]   Greenberger-Horne-Zeilinger-state analyzer [J].
Pan, JW ;
Zeilinger, A .
PHYSICAL REVIEW A, 1998, 57 (03) :2208-2211
[33]  
PURCELL EM, 1946, PHYS REV, V69, P681
[34]   Cavity-based quantum networks with single atoms and optical photons [J].
Reiserer, Andreas ;
Rempe, Gerhard .
REVIEWS OF MODERN PHYSICS, 2015, 87 (04) :1379-1418
[35]   Efficient Dicke-state distribution in a network of lossy channels [J].
Roga, Wojciech ;
Ikuta, Rikizo ;
Horikiri, Tomoyuki ;
Takeoka, Masahiro .
PHYSICAL REVIEW A, 2023, 108 (01)
[36]   Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes [J].
Rosenfeld, Wenjamin ;
Burchardt, Daniel ;
Garthoff, Robert ;
Redeker, Kai ;
Ortegel, Norbert ;
Rau, Markus ;
Weinfurter, Harald .
PHYSICAL REVIEW LETTERS, 2017, 119 (01)
[37]   In situ equalization of single-atom loading in large-scale optical tweezer arrays [J].
Schymik, Kai-Niklas ;
Ximenez, Bruno ;
Bloch, Etienne ;
Dreon, Davide ;
Signoles, Adrien ;
Nogrette, Florence ;
Barredo, Daniel ;
Browaeys, Antoine ;
Lahaye, Thierry .
PHYSICAL REVIEW A, 2022, 106 (02)
[38]  
Shor P. W., 1994, Proceedings. 35th Annual Symposium on Foundations of Computer Science (Cat. No.94CH35717), P124, DOI 10.1109/SFCS.1994.365700
[39]   High-Rate, High-Fidelity Entanglement of Qubits Across an Elementary Quantum Network [J].
Stephenson, L. J. ;
Nadlinger, D. P. ;
Nichol, B. C. ;
An, S. ;
Drmota, P. ;
Ballance, T. G. ;
Thirumalai, K. ;
Goodwin, J. F. ;
Lucas, D. M. ;
Ballance, C. J. .
PHYSICAL REVIEW LETTERS, 2020, 124 (11)
[40]   Strong Coupling of a Single Ion to an Optical Cavity [J].
Takahashi, Hiroki ;
Kassa, Ezra ;
Christoforou, Costas ;
Keller, Matthias .
PHYSICAL REVIEW LETTERS, 2020, 124 (01)