Rate-fidelity tradeoff in cavity-based remote entanglement generation

被引:1
作者
Tanji, Kazufumi [1 ]
Takahashi, Hiroki [2 ]
Roga, Wojciech [1 ]
Takeoka, Masahiro [1 ]
机构
[1] Keio Univ, Fac Sci & Engn, Dept Elect & Elect Engn, 3-14-1 Hiyoshi,Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
[2] Okinawa Inst Sci & Technol Grad Univ, Expt Quantum Informat Phys Unit, 1919-1 Tancha, Kunigami, Okinawa 9040495, Japan
关键词
HERALDED ENTANGLEMENT; SINGLE ATOMS; QUANTUM;
D O I
10.1103/PhysRevA.110.042405
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The qubit scalability imposes a paramount challenge in the field of quantum computing. Photonic interconnects between distinct quantum computing modules provide a solution to deal with this issue. The fundamental part of this approach is entanglement distribution via traveling photons emitted by matter qubits. However, randomness of the spontaneous emission in the matter qubits limits both the entanglement fidelity and the generation rate. In this paper, by numerical and analytical methods, we investigate the relationship between the entanglement affected by the spontaneous emission and the waveform of the pump pulse used in the photon generation. We confirm and analyze a rate-fidelity trade-off in the entanglement swapping with Gaussian pump pulses and show that a simple extension to non-Gaussian pump pulses improves the trade-off in a certain parameter region. Furthermore we extend our analysis to entanglement distribution in the general multipartite setting and show that the analysis of the bipartite entanglement can be straightforwardly applied in this case as well.
引用
收藏
页数:14
相关论文
共 46 条
[1]  
[Anonymous], 1996, A fast quantum mechanical algorithm for database search, DOI [10.1145/237814.237866, DOI 10.1145/237814.237866]
[2]   Entanglement Swapping with Photons Generated on Demand by a Quantum Dot [J].
Basset, F. Basso ;
Rota, M. B. ;
Schimpf, C. ;
Tedeschi, D. ;
Zeuner, K. D. ;
da Silva, S. F. Covre ;
Reindl, M. ;
Zwiller, V ;
Jons, K. D. ;
Rastelli, A. ;
Trotta, R. .
PHYSICAL REVIEW LETTERS, 2019, 123 (16)
[3]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[4]   Circuit quantum electrodynamics [J].
Blais, Alexandre ;
Grimsmo, Arne L. ;
Girvin, S. M. ;
Wallraffe, Andreas .
REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
[5]   Creation of entangled states of distant atoms by interference [J].
Cabrillo, C ;
Cirac, JI ;
García-Fernández, P ;
Zoller, P .
PHYSICAL REVIEW A, 1999, 59 (02) :1025-1033
[6]   Single-photon absorption in coupled atom-cavity systems [J].
Dilley, Jerome ;
Nisbet-Jones, Peter ;
Shore, Bruce W. ;
Kuhn, Axel .
PHYSICAL REVIEW A, 2012, 85 (02)
[7]  
Duan LM, 2004, QUANTUM INF COMPUT, V4, P165
[8]   Efficient engineering of multiatom entanglement through single-photon detections [J].
Duan, LM ;
Kimble, HJ .
PHYSICAL REVIEW LETTERS, 2003, 90 (25) :4
[9]  
Gao S., 2020, THESIS U OXFORD
[10]  
Gardiner C., 2004, Quantum Noise: A Handbook of Markovian and non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics