Anomaly Detection Using Data Rate of Change on Medical Data

被引:0
作者
Rim, Kwang-Cheol [1 ]
Yoon, Young-Min [2 ]
Kim, Sung-Uk [3 ]
Kim, Jeong-In [4 ]
机构
[1] Chosun Univ, AI Convergence Res Inst, Gwangju 61452, South Korea
[2] Chonnam Natl Univ, Interdisciplinary Program Architectural Studies, Gwangju 61186, South Korea
[3] AINTCHAIN SOFT Co Ltd, Mokpo Si 58750, South Korea
[4] Chosun Univ, BK21 Human Resources Dev Project Grp, Gwangju 61452, South Korea
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 80卷 / 03期
基金
新加坡国家研究基金会;
关键词
Anomaly data; anomaly detection; medical anomaly data; cyber security; rate of change; TIME-SERIES;
D O I
10.32604/cmc.2024.054620
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The identification and mitigation of anomaly data, characterized by deviations from normal patterns or singularities, stand as critical endeavors in modern technological landscapes, spanning domains such as Non-Fungible Tokens (NFTs), cyber-security, and the burgeoning metaverse. This paper presents a novel proposal aimed at refining anomaly detection methodologies, with a particular focus on continuous data streams. The essence of the proposed approach lies in analyzing the rate of change within such data streams, leveraging this dynamic aspect to discern anomalies with heightened precision and efficacy. Through empirical evaluation, our method demonstrates a marked improvement over existing techniques, showcasing more nuanced and sophisticated result values. Moreover, we envision a trajectory of continuous research and development, wherein iterative refinement and supplementation will tailor our approach to various anomaly detection scenarios, ensuring adaptability and robustness in real-world applications.
引用
收藏
页码:3903 / 3916
页数:14
相关论文
共 16 条
[1]   An HTTP Anomaly Detection Architecture Based on the Internet of Intelligence [J].
An, Yufei ;
He, Ying ;
Yu, F. Richard ;
Li, Jianqiang ;
Chen, Jianyong ;
Leung, Victor C. M. .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (03) :1552-1565
[2]   A Review on Outlier/Anomaly Detection in Time Series Data [J].
Blazquez-Garcia, Ane ;
Conde, Angel ;
Mori, Usue ;
Lozano, Jose A. .
ACM COMPUTING SURVEYS, 2022, 54 (03)
[3]  
Braei M, 2020, Arxiv, DOI arXiv:2004.00433
[4]   Deep Learning for Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines [J].
Choi, Kukjin ;
Yi, Jihun ;
Park, Changhwa ;
Yoon, Sungroh .
IEEE ACCESS, 2021, 9 :120043-120065
[5]   Deep Learning for Medical Anomaly Detection - A Survey [J].
Fernando, Tharindu ;
Gammulle, Harshala ;
Denman, Simon ;
Sridharan, Sridha ;
Fookes, Clinton .
ACM COMPUTING SURVEYS, 2021, 54 (07)
[6]  
He Y., 2019, J PHYS C SER, V1213, p042 050, DOI [DOI 10.1088/1742-6596/1213/4/042050, 10.1088/1742-6596/1213/4/042050]
[7]   Efficient anomaly detection from medical signals and images with convolutional neural networks for Internet of medical things (IoMT) systems [J].
Khalil, Ali A. ;
E. Ibrahim, Fatma ;
Abbass, Mohamed Y. ;
Haggag, Nehad ;
Mahrous, Yasser ;
Sedik, Ahmed ;
Elsherbeeny, Zeinab ;
Khalaf, Ashraf A. M. ;
Rihan, Mohamad ;
El-Shafai, Walid ;
El-Banby, Ghada M. ;
Soltan, Eman ;
Soliman, Naglaa F. ;
Algarni, Abeer D. ;
Al-Hanafy, Waleed ;
El-Fishawy, Adel S. ;
El-Rabaie, El-Sayed M. ;
Al-Nuaimy, Waleed ;
Dessouky, Moawad I. ;
Saleeb, Adel A. ;
Messiha, Nagy W. ;
El-Dokany, Ibrahim M. ;
El-Bendary, Mohsen A. M. ;
Abd El-Samie, Fathi E. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2022, 38 (01)
[8]   Clustering-based anomaly detection in multivariate time series data [J].
Li, Jinbo ;
Izakian, Hesam ;
Pedrycz, Witold ;
Jamal, Iqbal .
APPLIED SOFT COMPUTING, 2021, 100
[9]  
Mingyan Teng, 2010, Proceedings 2010 International Conference on Progress in Informatics and Computing (PIC 2010), P603, DOI 10.1109/PIC.2010.5687485
[10]   Time-Series Anomaly Detection Service at Microsoft [J].
Ren, Hansheng ;
Xu, Bixiong ;
Wang, Yujing ;
Yi, Chao ;
Huang, Congrui ;
Kou, Xiaoyu ;
Xing, Tony ;
Yang, Mao ;
Tong, Jie ;
Zhang, Qi .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :3009-3017