Out-of-Distribution Detection Based on Multiple Metrics Fusion of Network Hidden Features

被引:0
|
作者
Zhu, Qiuyu [1 ]
He, Yiwei [1 ]
机构
[1] Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200444, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; Measurement; Training; Data models; Semantics; Neural networks; Data mining; Uncertainty; Training data; Posterior probability; Pattern recognition; Out-of-distribution detection; hidden features; pattern recognition; multiple metrics fusion;
D O I
10.1109/ACCESS.2024.3471693
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traditional pattern recognition models achieve excellent classification performance. However, when out-of-distribution (OOD) samples, which are outside the training distribution of in-distribution (ID) data, are input into the model, the model often assigns excessively high confidence. Simply using the probability information of the output classification from the network for OOD detection does not yield satisfactory results. The paper starts with the hidden feature information from the intermediate layers of neural networks to design discriminative metrics, including the modulus ratio of input and output from the convolutional layers and the feature distribution differences of the Batch Normalization (BN) layers within the network. Combined with the OOD detection model based on predefined evenly-distribution class centroids (PEDCC)-Loss, we propose a fusion metric selection strategy. This strategy selects appropriate feature metrics for multi-feature fusion to achieve optimal detection capability for both ID and OOD samples simultaneously. Our method requires only training the classification network model, without any input pre-processing or specific OOD data pre-tuning. Extensive experiments on several benchmark datasets show that our approach achieves state-of-the-art performance in simultaneously recognizing ID and OOD samples while ensuring that the recognition rate of ID samples does not decrease. The code for the paper can be found at https://github.com/Hewell0/HiddenOOD.
引用
收藏
页码:145450 / 145458
页数:9
相关论文
共 50 条
  • [31] Unsupervised evaluation for out-of-distribution detection
    Zhang, Yuhang
    Hu, Jiani
    Wen, Dongchao
    Deng, Weihong
    PATTERN RECOGNITION, 2025, 160
  • [32] Generalized Out-of-Distribution Detection: A Survey
    Yang, Jingkang
    Zhou, Kaiyang
    Li, Yixuan
    Liu, Ziwei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (12) : 5635 - 5662
  • [33] Inductive Conformal Out-of-distribution Detection based on Adversarial Autoencoders
    Cai, Feiyang
    Ozdagli, Ali, I
    Potteiger, Nicholas
    Koutsoukos, Xenofon
    2021 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2021), 2021, : 90 - 95
  • [34] Open-Set Fault Diagnosis Based on 1D-ResNet With Fusion of Cross-Class and Extreme Information for Out-of-Distribution Detection
    Wang, Jinglong
    Zhang, Ridong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [35] Exploiting classifier inter-level features for efficient out-of-distribution detection
    Fayyad, Jamil
    Gupta, Kashish
    Mahdian, Navid
    Gruyer, Dominique
    Najjaran, Homayoun
    IMAGE AND VISION COMPUTING, 2024, 142
  • [36] Runtime Monitoring for Out-of-Distribution Detection in Object Detection Neural Networks
    Hashemi, Vahid
    Kretinsky, Jan
    Rieder, Sabine
    Schmidt, Jessica
    FORMAL METHODS, FM 2023, 2023, 14000 : 622 - 634
  • [37] Out-of-Distribution Detection of Unknown False Data Injection Attack With Logit-Normalized Bayesian ResNet
    Feng, Guangxu
    Lao, Keng-Weng
    Chen, Ge
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (06) : 6005 - 6017
  • [38] Out-of-Distribution Detection Using Outlier Detection Methods
    Diers, Jan
    Pigorsch, Christian
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 15 - 26
  • [39] Out-of-distribution detection by regaining lost clues
    Zhao, Zhilin
    Cao, Longbing
    Yu, Philip S.
    ARTIFICIAL INTELLIGENCE, 2025, 339
  • [40] Uncertainty Estimation and Out-of-Distribution Detection for Deep Learning-Based Image Reconstruction Using the Local Lipschitz
    Bhutto, Danyal F.
    Zhu, Bo
    Liu, Jeremiah Z.
    Koonjoo, Neha
    Li, Hongwei B.
    Rosen, Bruce R.
    Rosen, Matthew S.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (09) : 5422 - 5434