Out-of-Distribution Detection Based on Multiple Metrics Fusion of Network Hidden Features

被引:0
|
作者
Zhu, Qiuyu [1 ]
He, Yiwei [1 ]
机构
[1] Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200444, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; Measurement; Training; Data models; Semantics; Neural networks; Data mining; Uncertainty; Training data; Posterior probability; Pattern recognition; Out-of-distribution detection; hidden features; pattern recognition; multiple metrics fusion;
D O I
10.1109/ACCESS.2024.3471693
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traditional pattern recognition models achieve excellent classification performance. However, when out-of-distribution (OOD) samples, which are outside the training distribution of in-distribution (ID) data, are input into the model, the model often assigns excessively high confidence. Simply using the probability information of the output classification from the network for OOD detection does not yield satisfactory results. The paper starts with the hidden feature information from the intermediate layers of neural networks to design discriminative metrics, including the modulus ratio of input and output from the convolutional layers and the feature distribution differences of the Batch Normalization (BN) layers within the network. Combined with the OOD detection model based on predefined evenly-distribution class centroids (PEDCC)-Loss, we propose a fusion metric selection strategy. This strategy selects appropriate feature metrics for multi-feature fusion to achieve optimal detection capability for both ID and OOD samples simultaneously. Our method requires only training the classification network model, without any input pre-processing or specific OOD data pre-tuning. Extensive experiments on several benchmark datasets show that our approach achieves state-of-the-art performance in simultaneously recognizing ID and OOD samples while ensuring that the recognition rate of ID samples does not decrease. The code for the paper can be found at https://github.com/Hewell0/HiddenOOD.
引用
收藏
页码:145450 / 145458
页数:9
相关论文
共 50 条
  • [1] Hyperdimensional Feature Fusion for Out-of-Distribution Detection
    Wilson, Samuel
    Fischer, Tobias
    Sunderhauf, Niko
    Dayoub, Feras
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2643 - 2653
  • [2] Boosting Out-of-distribution Detection with Typical Features
    Zhu, Yao
    Chen, Yuefeng
    Xie, Chuanlong
    Li, Xiaodan
    Zhang, Rong
    Xue, Hui
    Tian, Xiang
    Zheng, Bolun
    Chen, Yaowu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [3] Out-of-Distribution Detection for Fungi Images with Similar Features
    Kawashima, Yutaka
    Higo, Mayuka
    Tokiwa, Toshiyuki
    Asami, Yukihiro
    Nonaka, Kenichi
    Aoki, Yoshimitsu
    FIFTEENTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION, 2021, 11794
  • [4] Graph Energy Variety Network-based Out-of-distribution Detection
    Zhong, Yan
    Shang, Ruobing
    Cai, Jianxiu
    Tang, Rui
    Wong, Dennis
    8TH INTERNATIONAL CONFERENCE ON BIG DATA AND INTERNET OF THINGS, BDIOT 2024, 2024, : 64 - 70
  • [5] Out-of-distribution Detection Learning with Unreliable Out-of-distribution Sources
    Zheng, Haotian
    Wang, Qizhou
    Fang, Zhen
    Xia, Xiaobo
    Liu, Feng
    Liu, Tongliang
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [6] Principled Out-of-Distribution Detection via Multiple Testing
    Magesh, Akshayaa
    Veeravalli, Venugopal V.
    Roy, Anirban
    Jha, Susmit
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [7] Ensemble-Based Out-of-Distribution Detection
    Yang, Donghun
    Mai Ngoc, Kien
    Shin, Iksoo
    Lee, Kyong-Ha
    Hwang, Myunggwon
    ELECTRONICS, 2021, 10 (05) : 1 - 12
  • [8] Heatmap-based Out-of-Distribution Detection
    Hornauer, Julia
    Belagiannis, Vasileios
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2602 - 2611
  • [9] Rule-Based Out-of-Distribution Detection
    De Bernardi G.
    Narteni S.
    Cambiaso E.
    Mongelli M.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (06): : 2627 - 2637
  • [10] Toward Metrics for Differentiating Out-of-Distribution Sets
    Abbasi, Mandieh
    Shui, Changjian
    Rajabi, Arezoo
    Gagne, Christian
    Bobba, Rakesh B.
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 929 - 936