Surface Engineering of N-Doped Carbon Derived from Polyaniline for Primary Zinc-Air Batteries

被引:1
作者
Chávez-Hernández, Ángel [1 ]
Ramos-Castillo, Carlos M. [1 ]
Olivas, Amelia [2 ]
Delgado, Anabel D. [3 ]
Guerra-Balcázar, Minerva [4 ]
Álvarez-Contreras, Lorena [3 ]
Arjona, Noé [1 ]
机构
[1] Centro de Investigación y Desarrollo, Tecnológico en Electroquímica Parque Tecnológico Querétaro S/N, SanFandila, Querétaro, C.P., Pedro Escobedo
[2] Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, Baja California, Ensenada
[3] Centro de Investigación en Materiales Avanzados Complejo Industrial Chihuahua, C. P., Chihuahua
[4] Facultad de Ingeniería, División de Investigación y Posgrado, Universidad Autónoma de Querétaro, C. P., Querétaro
关键词
N-doped carbon; oxygen reduction reaction; polyaniline; Zn-air battery;
D O I
10.1002/cnma.202400361
中图分类号
学科分类号
摘要
Zinc-air batteries (ZABs) with metal-free cathodes are considered environmentally friendly and cost-effective. However, more active and durable catalysts are required for this purpose. Herein, polyaniline (PANI)-derived carbon materials were obtained to boost the oxygen reduction reaction (ORR) and, consequently, the performance of a primary ZAB. The developed porous N-doped carbon (NDC) materials were engineered by varying the polymerization time and calcination temperature (500–900 °C). SEM micrographs and BET surface areas showed that the polymerization of aniline under cold conditions (5 °C) at 6, 8, or 24 h did not have a significant effect on the morphology or surface area. The fibrous structure of PANI was engineered by temperature, resulting in a progressive increase in the surface area until a three-dimensional porous structure was achieved at 900 °C with the highest area of 601.9 m2 g−1. The surface doping of nitrogen species shifted from PANI-rich N species to enriched graphitic N from 12.69 % (500 °C) to 24.26 % at 900 °C. The NDC 900 °C presented a voltage of 1.4 V and power density of 56 mW cm−2 (only 7 mW cm−2 lower than that of Pt/C). The results demonstrate that this material is an excellent candidate for high-performance primary ZABs. © 2024 Wiley-VCH GmbH.
引用
收藏
相关论文
共 59 条
[1]  
Iqbal A., El-Kadri O.M., Hamdan N.M., J. Energy Storage, 62, (2023)
[2]  
Yang D., Zhang L., Yan X., Yao X., Small Methods, 1, (2017)
[3]  
Yan X., Jia Y., Yao X., Chem. Soc. Rev., 47, pp. 7628-7658, (2018)
[4]  
Yan X., Zhuang L., Zhu Z., Yao X., Nanoscale, 13, 6, pp. 3327-3345, (2021)
[5]  
Li Z., Zeng Y., Xiong D., Zhou J., Yang Y., Zhan F., Du Y., Liu Y., Inorg. Chem. Front., 11, pp. 549-561, (2024)
[6]  
Wang F., Qiu F., Zhang W., Zhu K., Chen J., Liao M., Dong X., Wang F., Small, 20, (2024)
[7]  
Cheng J., Lyu C., Li H., Wu J., Hu Y., Han B., Wu K., Hojamberdiev M., Geng D., Appl. Catal. B, 327, (2023)
[8]  
Liu S., Li G., Gao Y., Xiao Z., Zhang J., Wang Q., Zhang X., Wang L., Catal. Sci. Technol., 7, 18, pp. 4007-4016, (2017)
[9]  
You C., Liao S., Li H., Hou S., Peng H., Zeng X., Liu F., Zheng R., Fu Z., Li Y., Carbon, 69, pp. 294-301, (2014)
[10]  
Zhao Z., Xie Y., Lu L., Electrochim. Acta, 283, pp. 1618-1631, (2018)