Enhancing IoT Security Using GA-HDLAD: A Hybrid Deep Learning Approach for Anomaly Detection

被引:2
|
作者
Mutambik, Ibrahim [1 ]
机构
[1] King Saud Univ, Coll Humanities & Social Sci, Dept Informat Sci, POB 11451, Riyadh, Saudi Arabia
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 21期
关键词
Internet of Things (IoT); IoT security; anomaly detection; hybrid deep learning (HDL); genetic algorithm (GA); feature extraction techniques (FETs); OPTIMIZATION; ALGORITHM;
D O I
10.3390/app14219848
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The adoption and use of the Internet of Things (IoT) have increased rapidly over recent years, and cyber threats in IoT devices have also become more common. Thus, the development of a system that can effectively identify malicious attacks and reduce security threats in IoT devices has become a topic of great importance. One of the most serious threats comes from botnets, which commonly attack IoT devices by interrupting the networks required for the devices to run. There are a number of methods that can be used to improve security by identifying unknown patterns in IoT networks, including deep learning and machine learning approaches. In this study, an algorithm named the genetic algorithm with hybrid deep learning-based anomaly detection (GA-HDLAD) is developed, with the aim of improving security by identifying botnets within the IoT environment. The GA-HDLAD technique addresses the problem of high dimensionality by using a genetic algorithm during feature selection. Hybrid deep learning is used to detect botnets; the approach is a combination of recurrent neural networks (RNNs), feature extraction techniques (FETs), and attention concepts. Botnet attacks commonly involve complex patterns that the hybrid deep learning (HDL) method can detect. Moreover, the use of FETs in the model ensures that features can be effectively extracted from spatial data, while temporal dependencies are captured by RNNs. Simulated annealing (SA) is utilized to select the hyperparameters necessary for the HDL approach. In this study, the GA-HDLAD system is experimentally assessed using a benchmark botnet dataset, and the findings reveal that the system provides superior results in comparison to existing detection methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Enhancing IoT Anomaly Detection Performance for Federated Learning
    Weinger, Brett
    Kim, Jinoh
    Sim, Alex
    Nakashima, Makiya
    Moustafa, Nour
    Wu, K. John
    2020 16TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2020), 2020, : 206 - 213
  • [12] Robust Network Security: A Deep Learning Approach to Intrusion Detection in IoT
    Odeh, Ammar
    Abu Taleb, Anas
    Computers, Materials and Continua, 2024, 81 (03) : 4149 - 4169
  • [13] Using Autoencoders for Anomaly Detection and Transfer Learning in IoT
    Tien, Chin-Wei
    Huang, Tse-Yung
    Chen, Ping-Chun
    Wang, Jenq-Haur
    COMPUTERS, 2021, 10 (07)
  • [14] FedGroup: A Federated Learning Approach for Anomaly Detection in IoT Environments
    Zhang, Yixuan
    Suleiman, Basem
    Alibasa, Muhammad Johan
    MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES, MOBIQUITOUS 2022, 2023, 492 : 121 - 132
  • [15] Anomaly Detection for IOT Systems Using Active Learning
    Zakariah, Mohammed
    Almazyad, Abdulaziz S.
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [16] A Comparative Study of Anomaly Detection Techniques for IoT Security Using Adaptive Machine Learning for IoT Threats
    Alsalman, Dheyaaldin
    IEEE ACCESS, 2024, 12 : 14719 - 14730
  • [17] DeepIoT.IDS: Hybrid Deep Learning for Enhancing IoT Network Intrusion Detection
    Maseer, Ziadoon K.
    Yusof, Robiah
    Mostafa, Salama A.
    Bahaman, Nazrulazhar
    Musa, Omar
    Al-rimy, Bander Ali Saleh
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (03): : 3945 - 3966
  • [18] IoT Anomaly Detection Using a Multitude of Machine Learning Algorithms
    Balega, Maria
    Farag, Waleed
    Ezekiel, Soundararajan
    Wu, Xin-Wen
    Deak, Alicia
    Good, Zaryn
    2022 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, AIPR, 2022,
  • [19] Anomaly Detection Using System Logs: A Deep Learning Approach
    Sinha, Rohit
    Sur, Rittika
    Sharma, Ruchi
    Shrivastava, Avinash K.
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY AND PRIVACY, 2022, 16 (01)
  • [20] Enhancing the security in IoT and IIoT networks: An intrusion detection scheme leveraging deep transfer learning
    Ahmad, Basharat
    Wu, Zhaoliang
    Huang, Yongfeng
    Rehman, Sadaqat Ur
    KNOWLEDGE-BASED SYSTEMS, 2024, 305