High-performance organic electrodes for sustainable zinc-ion batteries: Advances, challenges and perspectives

被引:8
|
作者
Zhang, Yu [1 ]
Li, Yi [1 ]
Yao, Sunyu [2 ]
Ali, Noreen [1 ]
Kong, Xirui [1 ]
Wang, Jiulin [1 ,2 ,3 ]
机构
[1] Xinjiang Univ, Coll Chem, Urumqi 830017, Xinjiang, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Chem Engn, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Sichuan Res Inst, Chengdu 610213, Sichuan, Peoples R China
关键词
Zinc-ion batteries; Organic cathode materials; Redox reaction mechanism; Electrochemistry; ELECTROCHEMICAL PROPERTIES; ENERGY-STORAGE; CATHODE MATERIAL; HIGH-CAPACITY; POLYANILINE; DIANHYDRIDE; NANOFIBERS; CHEMISTRY; QUINONE; DESIGN;
D O I
10.1016/j.ensm.2024.103544
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The burgeoning demand for renewable energy sources is catalyzing advancements in energy storage and conversion technologies. In contrast to conventional inorganic materials, organic electrode materials (OEMs) are poised as the optimal cathodes for the next-generation zinc-ion batteries (ZIBs). This is attributable to their abundant source materials, superior theoretical capacity, versatility in structural design, and inherent sustainability. Despite extensive research endeavors directed towards OEMs, they frequently manifest challenges associated with limited conductivity and stability, precipitating in a degradation of their output capability. Furthermore, the underlying operational mechanisms of these materials remain a subject of ongoing investigation. This review firstly elucidates the diverse storage mechanisms posited for various organic cathodes and delineates the fundamentals and evolutionary trends of OEMs, especially those characterized by distinct active functional groups. Subsequently, consolidates the primary challenges encumbering organic cathodes and advocate strategic design interventions to enhance their electrochemical performance. The forward-looking perspectives on Zn-organic batteries are provided finally. We believe that this review will provide some inspiration for the development of advanced and efficient aqueous ZIBs.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] A Feasible Strategy for High-Performance Aqueous Zinc-Ion Batteries: Introducing Conducting Polymer
    Zhao, Yi
    Wei, Mengzhen
    Zhang, Huanrong
    Zhang, Huimin
    Zhu, Yucheng
    Ma, Hui
    Xue, Mianqi
    CHEMSUSCHEM, 2025, 18 (02)
  • [32] Challenges and Strategies in the Development of Zinc-Ion Batteries
    Loh, Jiong Rui
    Xue, Junmin
    Lee, Wee Siang Vincent
    SMALL METHODS, 2023, 7 (07)
  • [33] Advances in zinc-ion structural batteries
    Lionetto, Francesca
    Arianpouya, Nasim
    Bozzini, Benedetto
    Maffezzoli, Alfonso
    Nematollahi, Mehrdad
    Mele, Claudio
    JOURNAL OF ENERGY STORAGE, 2024, 84
  • [34] Recent Advances on Spinel Zinc Manganate Cathode Materials for Zinc-Ion Batteries
    Cai, Kexing
    Luo, Shao-hua
    Feng, Jie
    Wang, Jiachen
    Zhan, Yang
    Wang, Qing
    Zhang, Yahui
    Liu, Xin
    CHEMICAL RECORD, 2022, 22 (01)
  • [35] High-Voltage Zinc-Ion Batteries: Design Strategies and Challenges
    Yan, Jianping
    Ang, Edison Huixiang
    Yang, Yang
    Zhang, Yufei
    Ye, Minghui
    Du, Wencheng
    Li, Cheng Chao
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (22)
  • [36] Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries
    Wang, Xiao
    Zhang, Zhengchunyu
    Xi, Baojuan
    Chen, Weihua
    Jia, Yuxi
    Feng, Jinkui
    Xiong, Shenglin
    ACS NANO, 2021, 15 (06) : 9244 - 9272
  • [37] Organic cation-supported layered vanadate cathode for high-performance aqueous zinc-ion batteries
    Wang, Changding
    Li, Yingfang
    Zhang, Sida
    Sang, Tian-Yi
    Lei, Yu
    Liu, Ruiqi
    Wan, Fu
    Chen, Yuejiao
    Chen, Weigen
    Zheng, Yujie
    Sun, Shuhui
    CARBON ENERGY, 2025, 7 (02)
  • [38] Unveiling Organic Electrode Materials in Aqueous Zinc-Ion Batteries: From Structural Design to Electrochemical Performance
    Li, Dujuan
    Guo, Yuxuan
    Zhang, Chenxing
    Chen, Xianhe
    Zhang, Weisheng
    Mei, Shilin
    Yao, Chang-Jiang
    NANO-MICRO LETTERS, 2024, 16 (01)
  • [39] Recent Advances on Challenges and Strategies of Manganese Dioxide Cathodes for Aqueous Zinc-Ion Batteries
    Xu, Yuhui
    Zhang, Gaini
    Liu, Jingqian
    Zhang, Jianhua
    Wang, Xiaoxue
    Pu, Xiaohua
    Wang, Jingjing
    Yan, Cheng
    Cao, Yanyan
    Yang, Huijuan
    Li, Wenbin
    Li, Xifei
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (06)
  • [40] Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries
    Zhai, Xian-Zhi
    Qu, Jin
    Hao, Shu-Meng
    Jing, Ya-Qiong
    Chang, Wei
    Wang, Juan
    Li, Wei
    Abdelkrim, Yasmine
    Yuan, Hongfu
    Yu, Zhong-Zhen
    NANO-MICRO LETTERS, 2020, 12 (01)