Real-time prediction of TBM penetration rates using a transformer-based ensemble deep learning model

被引:4
作者
Zhang, Minggong [1 ,2 ]
Ji, Ankang [3 ,4 ]
Zhou, Chang [5 ]
Ding, Yuexiong [6 ]
Wang, Luqi [7 ]
机构
[1] Guangzhou Maritime Univ, Sch Intelligent Transportat & Engn, Guangzhou 510725, Peoples R China
[2] Zhuhai Macao Bridge Author, Hong Kong 519060, Peoples R China
[3] Hong Kong Polytech Univ, Dept Bldg & Real Estate, Hong Kong 999077, Peoples R China
[4] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
[5] Shanghai Tunnel Engn Co Ltd, Shanghai 200032, Peoples R China
[6] City Univ Hong Kong, Dept Architecture & Civil Engn, Hong Kong 999077, Peoples R China
[7] Guangdong Univ Technol, Sch Civil & Transportat Engn, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
TBM performance; Penetration rate; BiLSTM; Transformer; Deep learning; TUNNEL BORING MACHINE; NETWORK;
D O I
10.1016/j.autcon.2024.105793
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Targeted to address the challenge of accurately predicting Tunnel Boring Machine (TBM) penetration rates in real-time, this paper explores how to develop a deep learning method that effectively and efficiently predicts penetration rates. A deep learning method termed a transformer-based ensemble bi-directional Long Short-Term Memory network (TransBiLSTMNet) is developed, comprising several modules, namely, the data processing, a backbone ensemble model, an improved transformer, loss function, and evaluation metrics. Validated on an actual TBM operation database, the developed method attains excellent performance with Mean Squared Error (MSE) of 0.1372, Mean Absolute Error (MAE) of 0.2099, Root MSE (RMSE) of 0.3704, Mean Absolute Percentage Error (MAPE) of 0.7091 %, and R-2 of 0.9961. Furthermore, the ablation experiments and comparative results illustrate the superior predictive accuracy. Accordingly, the TransBiLSTMNet provides a robust solution for real-time TBM operation management. Future research could focus on refining the model and exploring its application to other predictive scenarios.
引用
收藏
页数:19
相关论文
共 84 条
[1]   Performance prediction of tunnel boring machine through developing a gene expression programming equation [J].
Armaghani, Danial Jahed ;
Faradonbeh, Roohollah Shirani ;
Momeni, Ehsan ;
Fahimifar, Ahmad ;
Tahir, M. M. .
ENGINEERING WITH COMPUTERS, 2018, 34 (01) :129-141
[2]   A review and case study of Artificial intelligence and Machine learning methods used for ground condition prediction ahead of tunnel boring Machines [J].
Ayawah, Prosper E. A. ;
Sebbeh-Newton, Sylvanus ;
Azure, Jessica W. A. ;
Kaba, Azupuri G. A. ;
Anani, Angelina ;
Bansah, Samuel ;
Zabidi, Hareyani .
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2022, 125
[3]  
Bieniawski Z.T., 2006, TUNN UNDERGR SP TECH, V21, P237, DOI DOI 10.1016/J.TUST.2005.12.016
[4]  
Bruland A., Hard Rock Tunnel Boring
[5]   Modelling the Torque with Artificial Neural Networks on a Tunnel Boring Machine [J].
Cachim, Paulo ;
Bezuijen, Adam .
KSCE JOURNAL OF CIVIL ENGINEERING, 2019, 23 (10) :4529-4537
[6]   A Novel Hybrid Deep Neural Network Prediction Model for Shield Tunneling Machine Thrust [J].
Chen, Cheng ;
Wu, Ben ;
Jia, Pengjiao ;
Wang, Zhansheng .
IEEE ACCESS, 2022, 10 :123858-123873
[7]   Shield attitude prediction based on Bayesian-LGBM machine learning [J].
Chen, Hongyu ;
Li, Xinyi ;
Feng, Zongbao ;
Wang, Lei ;
Qin, Yawei ;
Skibniewski, Miroslaw J. ;
Chen, Zhen-Song ;
Liu, Yang .
INFORMATION SCIENCES, 2023, 632 :105-129
[8]   TransMorph: Transformer for unsupervised medical image registration [J].
Chen, Junyu ;
Frey, Eric C. ;
He, Yufan ;
Segars, William P. ;
Li, Ye ;
Du, Yong .
MEDICAL IMAGE ANALYSIS, 2022, 82
[9]   Real-Time Prediction of TBM Driving Parameters Using In Situ Geological and Operation Data [J].
Chen, Liang ;
Liu, Zhitao ;
Mao, Weijie ;
Su, Hongye ;
Lin, Fulong .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (05) :4165-4176
[10]   BILSTM-Based Deep Neural Network for Rock-Mass Classification Prediction Using Depth-Sequence MWD Data: A Case Study of a Tunnel in Yunnan, China [J].
Cheng, Xu ;
Tang, Hua ;
Wu, Zhenjun ;
Liang, Dongcai ;
Xie, Yachen .
APPLIED SCIENCES-BASEL, 2023, 13 (10)