The impact of bottom water light exposure on electrical and sediment remediation performance of sediment microbial fuel cells

被引:4
|
作者
Misali R. [1 ]
Mohd Noor N.N. [1 ]
Oktavitri N.I. [2 ]
Kim K. [1 ]
机构
[1] Department of Ocean Engineering, Pukyong National University, Busan
[2] Study Program of Environmental Engineering, Faculty of Science and Technology, Universitas Airlangga, Surabaya
基金
新加坡国家研究基金会;
关键词
Electricity generation; Oxygen reduction reaction; Phosphate removal; Sediment microbial fuel cell; Sediment remediation;
D O I
10.1016/j.chemosphere.2024.142720
中图分类号
学科分类号
摘要
Sediment microbial fuel cells (SMFCs) generate bioelectricity from benthic sediments and thus providing both bioelectricity generation and sediment remediation. However, the high internal resistance of the cathode leads to a low power output, which requires research on cathode treatment. In this study, we explored the influence of light irradiation on bioelectricity production and nutrient removal in the SMFC system. The microcosm experiment of the SMFC system was designed with artificial illumination of 500 lux (light-SMFC) and compared with dark conditions of 15 lux (dark-SMFC), which showed that the current increases during photoperiods. The study reveals that light-illuminated SMFC consistently produced the highest voltage, with the highest voltage (553 mV) being 1.3 times higher than the dark-SMFC (440 mV). The polarization curves show a significant reduction in internal cathodic resistance under light condition, resulting in increased voltage generation. The light-SMFC exhibits the highest maximum power density of 35.93 mW/m2, surpassing the dark SMFC of 31.13 mW/m2. It was found that light illumination in the SMFC system increases oxygen availability in the cathodic region, which supports the oxygen reduction reaction (ORR) process. At the same time, the high bioelectricity output contributes to the highest sediment remediation by greatly reducing the chemical oxygen demand (COD) and phosphate (PO4–P) concentrations. The study highlights the potential of light illumination in mitigating cathodic limitation to improve SMFC performance and nutrient removal. © 2024
引用
收藏
相关论文
共 50 条
  • [21] The Influence of Energy Harvesting Strategies on Performance and Microbial Community for Sediment Microbial Fuel Cells
    Hsu, Lewis
    Mohamed, Abdelrhman
    Phuc Thi Ha
    Bloom, Jessica
    Ewing, Timothy
    Arias-Thode, Meriah
    Chadwick, Bart
    Beyenal, Haluk
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (03) : H3109 - H3114
  • [22] Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell
    Sajana, T. K.
    Ghangrekar, M. M.
    Mitra, A.
    BIORESOURCE TECHNOLOGY, 2014, 155 : 84 - 90
  • [23] A new approach to in situ sediment remediation based on air-cathode microbial fuel cells
    Yong Yuan
    Shungui Zhou
    Li Zhuang
    Journal of Soils and Sediments, 2010, 10 : 1427 - 1433
  • [24] A new approach to in situ sediment remediation based on air-cathode microbial fuel cells
    Yuan, Yong
    Zhou, Shungui
    Zhuang, Li
    JOURNAL OF SOILS AND SEDIMENTS, 2010, 10 (07) : 1427 - 1433
  • [25] Realignment of phosphorus in lake sediment induced by sediment microbial fuel cells (SMFC)
    Wang, Xuan
    Zhi, Yingying
    Chen, Yun
    Shen, Nan
    Wang, Guoxiang
    Yan, Yan
    CHEMOSPHERE, 2022, 291
  • [26] Exploratory study on improving the benthic environment in sediment by sediment microbial fuel cells
    Touch, N.
    Hibino, T.
    Kinjo, N.
    Morimoto, Y.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2018, 15 (03) : 507 - 512
  • [27] Alternation of Sediment Characteristics during Sediment Microbial Fuel Cells Amended Biochar
    Yang, Xunan
    Chen, Shanshan
    5TH ANNUAL INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE AND ENVIRONMENTAL ENGINEERING (MSEE2017), 2018, 301
  • [28] Exploratory study on improving the benthic environment in sediment by sediment microbial fuel cells
    N. Touch
    T. Hibino
    N. Kinjo
    Y. Morimoto
    International Journal of Environmental Science and Technology, 2018, 15 : 507 - 512
  • [29] Microbial electron transfer processes in sediment microbial fuel cells
    Zhang H.
    Xu M.
    Luo J.
    Zhu C.
    Yang Y.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2019, 49 (12): : 1461 - 1472
  • [30] An Approach to Predicting Sediment Microbial Fuel Cell Performance in Shallow and Deep Water
    Richter, Kenneth E.
    Ayers, Jennifer M.
    APPLIED SCIENCES-BASEL, 2018, 8 (12):