共 50 条
The impact of bottom water light exposure on electrical and sediment remediation performance of sediment microbial fuel cells
被引:4
|作者:
Misali R.
[1
]
Mohd Noor N.N.
[1
]
Oktavitri N.I.
[2
]
Kim K.
[1
]
机构:
[1] Department of Ocean Engineering, Pukyong National University, Busan
[2] Study Program of Environmental Engineering, Faculty of Science and Technology, Universitas Airlangga, Surabaya
来源:
基金:
新加坡国家研究基金会;
关键词:
Electricity generation;
Oxygen reduction reaction;
Phosphate removal;
Sediment microbial fuel cell;
Sediment remediation;
D O I:
10.1016/j.chemosphere.2024.142720
中图分类号:
学科分类号:
摘要:
Sediment microbial fuel cells (SMFCs) generate bioelectricity from benthic sediments and thus providing both bioelectricity generation and sediment remediation. However, the high internal resistance of the cathode leads to a low power output, which requires research on cathode treatment. In this study, we explored the influence of light irradiation on bioelectricity production and nutrient removal in the SMFC system. The microcosm experiment of the SMFC system was designed with artificial illumination of 500 lux (light-SMFC) and compared with dark conditions of 15 lux (dark-SMFC), which showed that the current increases during photoperiods. The study reveals that light-illuminated SMFC consistently produced the highest voltage, with the highest voltage (553 mV) being 1.3 times higher than the dark-SMFC (440 mV). The polarization curves show a significant reduction in internal cathodic resistance under light condition, resulting in increased voltage generation. The light-SMFC exhibits the highest maximum power density of 35.93 mW/m2, surpassing the dark SMFC of 31.13 mW/m2. It was found that light illumination in the SMFC system increases oxygen availability in the cathodic region, which supports the oxygen reduction reaction (ORR) process. At the same time, the high bioelectricity output contributes to the highest sediment remediation by greatly reducing the chemical oxygen demand (COD) and phosphate (PO4–P) concentrations. The study highlights the potential of light illumination in mitigating cathodic limitation to improve SMFC performance and nutrient removal. © 2024
引用
收藏
相关论文