CRISPR/Cas12a-mediated electrochemical biosensor for the sensitive detection of Vibrio parahaemolyticus

被引:0
作者
Jo, Seon Yeong [1 ]
Shin, Jae Hwan [1 ]
Park, Jong Pil [1 ]
机构
[1] Chung Ang Univ, Dept Food Sci & Technol, GreenTech Based Food Safety Res Grp, BK21 Four, Anseong 17546, South Korea
基金
新加坡国家研究基金会;
关键词
<italic>Vibrio parahaemolyticus</italic>; CRISPR/Cas12a; Hairpin DNA; Electrochemical sensor; Detection limit; RAPID DETECTION; TDH;
D O I
10.1007/s12257-025-00178-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Vibrio parahaemolyticus, a common gram-negative halophilic bacterium found in marine and estuarine environments, is a major cause of foodborne illnesses. This study presents the development of a highly sensitive and selective electrochemical DNA biosensor by combining the polymerase chain reaction (PCR) with the clustered regularly interspaced short palindromic repeats CRISPR-Cas12a (E-CRISPR) technology. The unique cis- and trans-cleavage activities of CRISPR-Cas12a were harnessed in the design of a hairpin DNA (hpDNA) probe, which was immobilized onto a gold electrode. This hpDNA probe enabled efficient cleavage and significantly improved detection sensitivity. Specifically, the hpDNA probe was cleaved from the electrode surface by Cas12a owing to its trans-cleavage activity, which resulted in a significant reduction in the current that was quantified to determine the detection result. The biosensor achieved a limit of detection (LOD) of 0.93 ng/mu L for the target DNA under optimal conditions. It also demonstrated a highly sensitive detection of V. parahaemolyticus within a linear range of 3.7 x 101 to 3.7 x 105 CFU/mL, exhibiting an LOD of 1.46 CFU/mL in a spiked mussel tissue matrix. The developed E-CRISPR biosensor, combined with PCR amplification, demonstrated high specificity, stability, and reproducibility. Compared to conventional PCR methods, this novel approach offers significant advantages for detecting V. parahaemolyticus containing tdh virulence gene. These advantages include enhanced specificity, faster analysis times, and clear, reliable results. Furthermore, the developed E-CRISPR biosensor has the potential to become a versatile and powerful tool for rapid and reliable diagnostics in public health and food safety monitoring.
引用
收藏
页码:88 / 99
页数:12
相关论文
共 50 条
  • [41] Entropy-driven reactions for controlling CRISPR/Cas12a and constructing an electrochemical biosensor for cardiac biomarkers detection
    Jiaying Wang
    Xianliang Wang
    Bin Li
    Kai Zhang
    Jingyuan Mao
    Microchimica Acta, 2023, 190
  • [42] CRISPR/Cas12a-mediated DNA-AgNC label-free logical gate for multiple microRNAs' assay
    Mu, Xiaomei
    Li, Jinshen
    Xiao, Shixiu
    Huang, Yong
    Zhao, Shulin
    Tian, Jianniao
    MICROCHIMICA ACTA, 2024, 191 (07)
  • [43] CASMART, a one-step CRISPR Cas12a-mediated isothermal amplification for rapid and high-resolution digital detection of rare mutant alleles
    Zhang, Chanqiong
    Cai, Zhengyi
    Zhou, Zihao
    Li, Mei
    Hong, Weilong
    Zhou, Wenxian
    Yu, Dianjun
    Wei, Panpan
    He, Jialin
    Wang, Yujuan
    Huang, Chongan
    Wang, Xiaobing
    Wu, Jinyu
    BIOSENSORS & BIOELECTRONICS, 2023, 222
  • [44] A point-of-care rapid HIV-1 test using an isothermal recombinase-aided amplification and CRISPR Cas12a-mediated detection
    Zhao, Jianhui
    Ao, Cailing
    Wan, Zhengwei
    Dzakah, Emmanuel Enoch
    Liang, Yuanhao
    Lin, Hongqing
    Wang, Haiying
    Tang, Shixing
    VIRUS RESEARCH, 2021, 303
  • [45] Lateral flow biosensor based on LAMP-CRISPR/Cas12a for sensitive and visualized detection of Salmonella spp.
    Lee, So -Young
    Oh, Se-Wook
    FOOD CONTROL, 2023, 145
  • [46] An ultrasensitive and specific ratiometric electrochemical biosensor based on SRCA-CRISPR/Cas12a system for detection of Salmonella in food
    Zheng, Simeng
    Yang, Qian
    Yang, Haoyu
    Zhang, Yunzhe
    Guo, Wei
    Zhang, Wei
    FOOD CONTROL, 2023, 146
  • [47] Split activator of CRISPR/Cas12a for direct and sensitive detection of microRNA
    He, Wen
    Li, Xinyu
    Li, Xinmin
    Guo, Minghui
    Zhang, Mengxuan
    Hu, Ruiwei
    Li, Menghan
    Ding, Shijia
    Yan, Yurong
    ANALYTICA CHIMICA ACTA, 2024, 1303
  • [48] CRISPR-Cas12a based aptasensor for sensitive and selective ATP detection
    Peng, Lei
    Zhou, Jin
    Liu, Guozhen
    Yin, Lijuan
    Ren, Siyu
    Man, Shuli
    Ma, Long
    SENSORS AND ACTUATORS B-CHEMICAL, 2020, 320
  • [49] Double Isothermal Amplification and CRISPR-Cas12a for Sensitive Detection of Citrinin
    Zhang, Man
    Xue, Xiaoting
    Gong, Haiyue
    Liu, Baolin
    Ye, Lei
    ACS FOOD SCIENCE & TECHNOLOGY, 2021, 1 (10): : 1997 - 2005
  • [50] Ultrasensitive detection of nucleic acid with a CRISPR/Cas12a empowered electrochemical sensor based on antimonene
    Fan, Taojian
    Zhang, Shaohui
    Meng, Changle
    Gao, Lingfeng
    Yan, Li
    Wang, Hao
    Shi, Xin
    Ge, Yanqi
    Zhang, Han
    Hu, Junqing
    FLATCHEM, 2024, 45